Answer:
It is not water absorbant and also the colour black, due to it's dark nature makes the person wearing the cloth feel hot. Unlike cotton, silk is not at all water absorbant as it does not absord any sweat produced in the wearers body
Answer:
86.2 g/mol
Explanation:
Before you can find the molar mass, you first need to calculate the number of moles of the gas. To find this value, you need to use the Ideal Gas Law:
PV = nRT
In this equation,
-----> P = pressure (mmHg)
-----> V = volume (L)
-----> n = moles
-----> R = Ideal Gas constant (62.36 L*mmHg/mol*K)
-----> T = temperature (K)
After you convert the volume from mL to L and the temperature from Celsius to Kelvin, you can use the equation to find the moles.
P = 760 mmHg R = 62.36 L*mmHg/mol*K
V = 250 mL / 1,000 = 0.250 L T = 20 °C + 273.15 = 293.15 K
n = ? moles
PV = nRT
(760 mmHg)(0.250 L) = n(62.36 L*mmHg/mol*K)(293.15 K)
190 = n(18280.834)
0.0104 = n
The molar mass represents the mass (g) of the gas per every 1 mole. Since you have been given a mass and mole value, you can set up a proportion to determine the molar mass.
<----- Proportion
<----- Cross-multiply
<----- Divide both sides by 0.0104
the molecular formula is calculated as follows
find the mole of each molecule
that is for carbon = 26.7/12= 2.23 moles
hydrogen= 2.24/1=2.24 moles
oxygen= 71.1/16=4.44 moles
find the mole ratio of each element
that is divide all moles by the smallest mole( 2.23)
for carbon=2.23/2.23=1,
hydrogen = 2.24/2,23=1
oxygen= 4.44/2.23= 2
the empirical formula = CHO2
therefore the molecular formula=(CHO2)n=270.1
{ ( 12x 1) + 1x1) +(16x2)}n=270.1
45n=270.1
n=6
molecular formula is therefore=(CHO2)6=C6H6O12
Answer:
The simplified expression for the fraction is 
Explanation:
From the given information:
O3* → O3 (1) fluorescence
O + O2 (2) decomposition
O3* + M → O3 + M (3) deactivation
The rate of fluorescence = rate of constant (k₁) × Concentration of reactant (cO)
The rate of decomposition is = k₂ × cO
The rate of deactivation = k₃ × cO × cM
where cM is the concentration of the inert molecule
The fraction (X) of ozone molecules undergoing deactivation in terms of the rate constants can be expressed by using the formula:



since cM is the concentration of the inert molecule
The balanced chemical equation would be as follows:
<span>NaCl + AgNO3 -> NaNO3 + AgCl
We are given the amounts of the reactants. We need to determine first which one is the limiting reactant. We do as follows:
0.0440 mol/L NaCl (.025 L) = 0.0011 mol NaCl -----> consumed completely and therefore the limiting reactant
0.320 mol/L AgNO3 (0.025 L) = 0.008 mol AgNO3
0.0011 mol NaCl ( 1 mol AgCl / 1 mol NaCl) = 0.0011 AgCl precipitate produced
</span>