I'm going to have to say A. My reason to that is because when you leave a cup of hot cocoa (assuming its hot), it gives off the heat (exothermic) the
The nulear charge is the number of protons.
As the number of protons increases, the nuclear charge grows ant thhe pulling electrostatic force between them and electrons also grows, given that the electrostatic force is proportional to the magnitude of the charges.
As the number of electrons grows, they occupy outer shelss (farther from the nucleus). And the outer electrons will feel not only the atraction of the protons from the nucleus, but the repulsion of the inner electrons.
Then, we see that the increase of nuclear charge is opposed by the increase of core electrons, and the outer (valence) electrons are not so tied to the nucleus as the core electrons are.
This is called shielding effect. A way to quantify the shielding effect is through the effective nuclear charge which is the number of protons (Z) less the number of core electrons.
The more the number of core shells the greater the shielding effect experience by electros in the outermost shells.
The shielding effect, explains why the valence eletrons are more easily removed from the atom than core electrons, and also explains some trends of the periodic table: variationof the size of the atoms in a row, the greater the shielding efect, the less the atraction force felt by the outermos electron, the farther they are and the larger the atom.
Answer:
no matter is destroyed or created, it merely changes form. In terms of atoms and bonds, there will be the same amount of atoms at the beginning of an experiment as the amount of atoms at the end of experiment. All that will have happened, is that during the reaction, bonds will have been broken and formed making new compounds. However, the amount of atoms remains exactly the same because matter can not be created or destroyed
Hope this helps!
Because atoms can join together to form molecules, which in turn form most of the objects around us.
Answer:
1) Maximun ammount of nitrogen gas: 
2) Limiting reagent: 
3) Ammount of excess reagent: 
Explanation:
<u>The reaction </u>

Moles of nitrogen monoxide
Molecular weight: 


Moles of hydrogen
Molecular weight: 


Mol rate of H2 and NO is 1:1 => hydrogen gas is in excess
1) <u>Maximun ammount of nitrogen gas</u> => when all NO reacted


2) <u>Limiting reagent</u>:
3) <u>Ammount of excess reagent</u>:

