An increase in motion and less attraction between particles
The oxidation number sulfur in H₂S is -2.
A compound's total number of oxidations must be zero.
The two hydrogen atoms in the chemical hydrogen sulfide, H₂S, each have an oxidation number of +1, making a total of +2. As a result, the compound's sulfur has an oxidation number of -2, and the total number of oxidations is 0.
Assume that the sulfur atom in H₂S has an oxidation number of x.
S be x.
Now,
2+x=0
⇒x=−2
<h3>What is oxidation number?</h3>
The total number of electrons that an atom either receives or loses in order to create a chemical connection with another atom is known as the oxidation number, also known as the oxidation state.
Depending on whether we are taking into account the electronegativity of the atoms or not, these phrases can occasionally have a distinct meaning. Coordination chemistry commonly makes use of the phrase "oxidation number."
<h3>What distinguishes an oxidation number from an oxidation state?</h3>
In contrast to the oxidation state, which indicates how oxidised an atom is in a molecule, the oxidation number describes the charge that the core metal atom will retain once all ligands have been removed.
To know more about oxidation number:
brainly.com/question/13182308
#SPJ4
Answer:
Mass % of hydrogen = 20.9 %
Explanation:
Given data:
Mass of hydrogen = 0.485 g
Mass of water = 2.32 g
Mass percent of hydrogen = ?
Solution:
Mass % of hydrogen = mass of hydrogen / mass of water × 100
Mass % of hydrogen = 0.485 g/ 2.32 g × 100
Mass % of hydrogen = 0.209 × 100
Mass % of hydrogen = 20.9 %
I know what you're asking but I don't think the question is stated properly. Technically, an atom will not join with an "oxide" ion; i.e., the oxide ion is an atom of oxygen to which two electrons have been added. An oxide ion will add to 2 K ions or 1 Ca ion. The K ion has lost just one electron so it takes two of them to equal the 2- charge on the oxide ion whereas the Ca ion has lost two electrons and it takes only one of them to equal the charge on the oxide ion.
The substance doesn't have a specific name. We just say that that substance is being reduced. Remember this mnemonic - OILRIG where "Oxidation is Loss, Reduction is Gain" of electrons.