The moles of oxygen gas (O2) that is needed is 4 moles
Explanation
2H2 +O2 → 2H2O
The moles of O2 is determined using the mole ratio of H2:O2
that is from equation above H2:O2 is 2:1
If the moles of H2 is 8 moles therefore the moles of O2
= 8 moles x 1/2 = 4 moles
Answer:
1. 4-ethyl-1-heptene
2. 6-ethyl-2-octene
3. 1-butyne
Explanation:
The compounds are named according to IUPAC rules.
Compound 1:
- Identify the longest carbon chain. This chain is called the parent chain.
- Identify all of the substituents (groups appending from the parent chain).
- The parent chain is numbered so that the multiple bonds have the lowest numbers (double has the priority over alkyl substituents).
- The longest chain contains 7 carbon atoms, so taken the name hept.
- The double bond between C1 and C2, so take no. 1 and add the suffix ene to hept "1-heptene".
- The ethyl group is the alkyl substituent on position 4.
- So the name is 4-ethyl-1-heptene.
Compound 2:
- Identify the longest carbon chain. This chain is called the parent chain.
- Identify all of the substituents (groups appending from the parent chain).
- The parent chain is numbered so that the multiple bonds have the lowest numbers (double has the priority over alkyl substituents).
- The longest chain contains 8 carbon atoms, so taken the name oct.
- The double bond between C2 and C3, so take no. 2 and add the suffix ene to oct "2-octene".
- The ethyl group is the alkyl substituent on position 6.
- So the name is 6-ethyl-2-octene.
Compound 3:
- Identify the longest carbon chain. This chain is called the parent chain.
- Identify all of the substituents (groups appending from the parent chain), there is no substituents.
- The parent chain is numbered so that the multiple bonds have the lowest numbers (Triple bond here take the lowest number).
- The longest chain contains 4 carbon atoms, so taken the name but.
- The triple bond between C1 and C2, so take no. 1 and add the suffix yne to but "1-butyne".
Answer:
Nitrifying Bacteria are a group of aerobic bacteria important in the nitrogen cycle as converters of soil ammonia to nitrates, compounds usable by plants. An example is nitrosomonas or nitrobacter and species in that family.
The schematic diagram is attached below, which summarises the oxidation of ammonia or free nitrogen in the soil to nitrates for the cowpea plant's utilisation.
The correct answer is - A) The major constituents of air are gaseous elements.
With the statement ''the major constituents of air are gaseous elements'' we can easily conclude that the air is a mixture. The reason for that is that we have a plural usage of the word element, elements, which mean that there are multiple elements that make up the air.
The air is indeed predominantly a mixture of gaseous elements. The most abundant gas in the air being the nitrogen with 78.9%, oxygen with 20.95%, argon 0.93%, and carbon dioxide 0.04%, with lesser amounts of other gases also be present in it. The water vapor is also present in the air, though it is variable, being around 1% at sea level, but only 0.4% over the entire atmosphere.