<h3>
Answer:</h3>
382.63 K
<h3>
Explanation:</h3>
We are given;
- Volume of Iodine as 71.4 mL
- Mass of Iodine as 0.276 g
- Pressure of Iodine as 0.478 atm
We are required to calculate the temperature of Iodine
- We are going to use the ideal gas equation;
- According to the ideal gas equation; PV = nRT, where R is the ideal gas constant, 0.082057 L.atm/mol.K.
T = PV ÷ nR
But, n, the number of moles = Mass ÷ Molar mass
Molar mass of iodine = 253.8089 g/mol
Thus, n = 0.276 g ÷ 253.8089 g/mol
= 0.001087 moles
Therefore;
T = (0.478 atm × 0.0714 L) ÷ (0.001087 moles × 0.082057)
= 382.63 K
Thus, the temperature of Iodine in Kelvin is 382.63 K
Answer:
HDL absorbs cholesterol and carries it back to the liver. The liver then flushes it from the body. High levels of HDL cholesterol can lower your risk for heart disease and stroke.
Explanation:
Answer:
Lionfish are native to the Indo-Pacific region. However, a hurricane caused six fish from an aquarium to accidentally be swept out into the Atlantic Ocean. Female lionfish produce thousands of eggs at a time, which has allowed their population to rapidly increase in the Atlantic. There’s no firm estimate of the number of lionfish in the Atlantic Ocean right now. However, it might be as many as 375 to 1,000 lionfish per acre of ocean. These fish have predators such as sharks and scorpion fish in their natural habitat. However, they don’t have many natural predators in the Atlantic Ocean, where the typical predatory animals don’t seem to recognize lionfish as food. Their one predator is humans, who have recently started fishing them for food. In the Atlantic Ocean, algae and seaweed are producers. Small fish, crabs, and other crustaceans make up the first and secondary consumers. Sharks and orcas are some of the larger predators, which are also consumers. Bacteria and fungi are the decomposers that break down food. Lionfish are consumers because they eat fish and small crustaceans.
Answer:
[H⁺] = 6.083x10⁻⁴ M, [C₆H₅OO⁻] = 6.083x10⁻⁴ M, [C₆H₅OOH] = 3.98x10⁻³M, pH = 3.22
Explanation:
Data: we have 0.56 gr of benzoic acid, disolved in 1Lt of water. Kₐ = 6.4x10⁻⁵
M (molar mass) of BA (Benzoic Acid) = 122 g/mol
Then, the inicial concentration is 0.56/122 = 4.59x10⁻³ M
We should consider the equation once it reaches the equilibrium:
C₆H₅COOH ⇄ C₆H₅COO⁻ + H⁺
C - x x x
And, for the Kₐ:
Kₐ = [H⁺][C₆H₅COO⁻]/[C₆H₅COOH] = x²/(C-x) , where C = 4.59x10⁻³
Then: x² + Kₐx - KₐC = 0
x² + 6.4x10⁻⁵ - 2.9x10⁻⁷ = 0
Resolving this cuadratic equation (remember to use Baskara equation), we obtain:
x = 6.083x10⁻⁴ M
Then: [H⁺] = [C₆H₅COO⁻] = 6.083x10⁻⁴ M
[C₆H₅COOH] = C - x = 3.98x10⁻³ M
pH = -Log [H⁺] = 3.22
Answer:
²⁵⁰₉₆Cm → ²⁴⁶₉₆Cm + 4 ¹₀n
Explanation:
The complete equation is;
²⁵⁰₉₆Cm → ²⁴⁶₉₆Cm + 4 ¹₀n
- The above equation is an example of a nuclear reaction in which unstable atom of Cm emits neutrons to become more stable.
- Radioactive isotopes undergo radioactivity or decay to attain stability, they do so by emitting particles such as alpha, beta particles or a neutron.
- An atom of Cm-250 undergoes decay and emits four neutrons to form an atom of Cm-246.