Mass = molarity x molar mass( NaNO₃) x volume
mass = 1.50 x 85.00 x 4.50
mass = 573.75 g of NaNO₃
hope this helps!
Answer:
Option D. Al is above H on the activity series.
Explanation:
The equation for the reaction is given below:
2Al + 6HBr —> 2AlBr₃ + 3H₂
The activity series gives us a background understanding of the reactivity of elements i.e how elements displace other elements when present in solution.
From the activity series of metals, we understood that metal higher in the series will displace those lower in the series.
Considering the equation given above, Al is higher than H in the activity series. Thus, the reaction will proceed as illustrated by the equation.
Therefore, we can conclude that the reaction will only occur if Al is higher than H in the activity series.
2.50 x 2/1 = 5 mol of Citric Acid
5 x (3+72+5+112) = 960g of Citric Acid
Answer: 960g of Citric Acid
Answer:
CuSO4 cell will have the greatest amount of deposit among all three. The deposit will occur at the cathode
Explanation:
The valence of the elements in this case is as follows -
Cu - 2e-
Sn - 4e-
Cr - 3e-
CuSO4 cell will have the greatest amount of deposit among all three
The atoms of copper metal will deposit at the cathode. At the cathode, the least number of moles of electrons needed .
Hence, more amount of copper can be extracted out by the electrolyte
Answer:
pH 4
Explanation:
Firstly, we define pH as the negative logarithm to base 10 of the concentration of hydrogen ions.
Mathematically, we express this as:
pH = -log[H+]
Now let’s us calculate the concentration of hydrogen in each of the pH
For pH 4, we have:
4 = -log[H+]
[H+] = -Antilog(4)
[H+] = 0.0001M
For pH 5,
[H+] = -Antilog(5)
[H+] = 0.00001M
We can see that 0.0001 is greater than 0.00001 and thus it has a greater concentration of hydrogen ions