Answer:
6
Explanation:
The maximum number of electrons in the orbitals of sub-levels are given as:
for s-sublevel we have two electrons and one orbital
p-sublevel we have six electrons and three orbitals
d-sublevel we have ten electrons and five orbitals
f- sublevel we have fourteen electrons and seven orbitals
The second energy level is represented by the p-sub-level and it will accommodate 6 electrons.
Because its structure is drawn by dots which can't describ its structure.
Answer:
The wavelength the student should use is 700 nm.
Explanation:
Attached below you can find the diagram I found for this question elsewhere.
Because the idea is to minimize the interference of the Co⁺²(aq) species, we should <u>choose a wavelength in which its absorbance is minimum</u>.
At 400 nm Co⁺²(aq) shows no absorbance, however neither does Cu⁺²(aq). While at 700 nm Co⁺²(aq) shows no absorbance and Cu⁺²(aq) does.
Answer:
2H2O2(aq)→ 2H2O(l) O2(g) : The oxidation number of oxygen for each compound is -1, -2, 0
Explanation:
In peroxides the oxidation state of oxygen is -1, since one oxygen bonds to the other oxygen and a hydrogen and the bound oxygen captures the electron of the remaining hydrogen. Through a scheme would be
H --- O --- O --- H
We remember that oxygen needs two electrons to get to have the configuration of the nearest noble gas (Lewis octet rule). In Peroxides, the oxygen is linked by covalent bonds. If we take it strictly, peroxide is a grouping of two oxygen, having the whole valence -2. which is why it is usually said that it is when oxygen has a valence -1
As we said the oxidation state is -2, the one that appears in the water molecule, since Hydrogen acts with valence +1 and it is 2 atoms that give up electrons to compensate for oxygen.
In the O2 it acts with valence 0 since we talk about gas in its elementary state. All diatomic molecules in their elemental state, generally gases or metals in solid state, act with a valence of 0.