Answer:
Step-by-step explanation:
Represent the width by W. Then, "The length of a rectangular field is 7 m less than 4 times the width" expressed symbolically is
L = 4W - 7 (dimensions in meters)
Recall that the perimeter formula in this case is P = 2L + 2W, and recognize that the perimeter value is 136 m. After substituting 4W - 7 for L, we get:
136 m = 2(4W - 7) + 2W, or
136 = 8W - 14 + 2W, or
150 = 10W These three equations are equivalent mathematical statements.
150 = 10W reduces to W = 15 (meters).
Part A: the independent variable is W, the width of the field.
Part B: The mathematical statement is 136 m = 2(4W - 7) + 2W, which after algebraic manipulation becomes 150 = 10W.
Part C: The above equation can be solved for W: W = 15 meters. This is the value of the independent variable.