Refer to the diagram shown below.
In 2.4 hours, the distance traveled by the first airplane heading a 51.3° at 750 mph is
a = 750*2.4 = 1800 miles.
The second airplane travels
b = 620*2.4 = 1488 mile
The angle between the two airplanes is
163° - 51.3° = 111.7°
Let c = the distance between the two airplanes after 2.4 hours.
From the Law of Cosines, obtain
c² = a² + b² - 2ab cos(111.7°)
= 3.24 x 10⁶ + 2.2141 x 10⁶
c = 2335.41 miles
Answer: 2335.4 miles
Answer:
The angle it subtend on the retina is
Explanation:
From the question we are told that
The length of the warbler is 
The distance from the binoculars is 
The magnification of the binoculars is 
Without the 8 X binoculars the angle made with the angular size of the object is mathematically represented as



Now magnification can be represented mathematically as

Where
is the angle the image of the warbler subtend on your retina when the binoculars i.e the binoculars zoom.
So

=> 

Generally the conversion to degrees can be mathematically evaluated as

Their inferences are based on evidence that they collect during their investigations. Readers learn that scientists gather and interpret evidence and draw conclusions based on this evidence. ... Once scientists have gathered evidence, they use it to make inferences about the things they are investigating.
Here, "Wavelength is same for both waves" it is the distance between two crests or two consecutive troughs, so, it is constant for both of them, you can easily figure it out.
In short, Your Answer would be "Wavelength"
Hope this helps!
Answer:
Explanation:
Momentum conservation

Kinetic energy conservation

Solve the system