Answer:
(a) g = 8.82158145
.
(b) 7699.990192m/s.
(c)5484.3301s = 1.5234 hours.(extremely fast).
Explanation:
(a) Strength of gravitational field 'g' by definition is
, here G is Gravitational Constant, and r is distance from center of earth, all the values will remain same except r which will be radius of earth + altitude at which ISS is in orbit.
r = 6721,000 meters, putting this value in above equation gives g = 8.82158145
.
(b) We have to essentially calculate centripetal acceleration that equals new 'g'.
here g is known, r is known and v is unknown.
plugging in r and g in above and solving for unknown gives V = 7699.990192m/s.
(c) S = vT, here T is time period or time required to complete one full revolution.
S = earth's circumfrence , V is calculated in (B) T is unknown.
solving for unknown gives T = 5484.3301s = 1.5234hours.
Answer:
34.6 m/s
Explanation:
From conservation of momentum, the sum of initial and final momentum are equal. Momentum is a product of mass and velocity. Initial mass will be 42.8+31.5+25.9=100.2 kg
Final mass will be 31.5+25.9=57.4 kg
From formula of momentum
M1v1=m2v2
Making v2 the subject of the formula then

Substitute 100.2 kg for M1, 19.8 m/s fkr v1 and 57.4 kg for m2 then

Answer:
The answer is a TRANSLATION TOOL or D
Explanation:
Answer: Take your pick
Explanation:
if they are all in parallel 1 /(1/100 + 1/300 + 1/50) = 30 Ω
if 50 is in parallel with 2 in series 1 / (1/(100 + 300) + 1/50) = 44.444...Ω
if 100 is in parallel with 2 in series 1 / (1/(50 + 300) + 1/100) = 77.777...Ω
if 300 is in parallel with 2 in series 1 / (1/(100 + 50) + 1/300) = 100 Ω
If 50 is in series with 2 in parallel 50 + 1/(1/100 + 1/300) = 125 Ω
If 100 is in series with 2 in parallel 100 + 1/(1/50 + 1/300) = 142.857...Ω
If 300 is in series with 2 in parallel 300 + 1/(1/50 + 1/100) = 333.333...Ω
If they are all in series 100 + 300 + 50 = 450 Ω
<span> the </span>spring constant<span> k is the slope of the straight line W versus x plot.</span>