To fill in the blank, the correct word is Mixture.
What is a Mixture?
- Matter that can vary in its composition is a(n) mixture.
- The substances that make up mixtures are not bonded together.
The formula is m = D x V
D = <span>13.69 g/cm^3.
</span>V = <span>15.0 cm^3
the mass of the liquid mercury is m= </span>13.69 g/cm^3 x 15.0 cm^3 = 195g
the molar mass of Hg is 200,
1 mole of Hg = 200g Hg, so #mole of Hg= 195 / 200 = 0.97 mol
but we know that
1 mole = 6.022 E23 atoms
0.97 mole=?
6.022 E23 atoms x 0.97 / 1 mole = 5.84 E23 atoms
The compound
is formed only by sharing of electrons between the atoms. The structure of the compound is shown in the image.
Each line between two atoms represents the sharing of an electron pair which results in the formation of a single bond. Since, carbon has 4 electrons in its valence shell and hydrogen has 1 electron in its valence shell so in order to complete the octet ( to have 8 electrons in their valence shell, noble gas configuration) to attain stability carbon needs 4 more electrons and hydrogen needs 1 electron. So, sharing of electron will occur as shown in the image and the formed compound is stable in nature.
Since, the bond that is formed by sharing of electrons between atoms is known as covalent bond. So, covalent bonding is most important in
.
Answer:
the relationship between an individual and a society is society doesn't exist independently without an individual .the individual lives and acts within society but society is nothing ,in spite of the combination of individual s for cooperation effort.
Answer:
4.285 L of water must be added.
Explanation:
Hello there!
In this case, for this dilution-like problems, we need to figure out the final volume of the resulting solution so that we would be able to obtain the correct volume of diluent (water) to be added. In such a way, we can obtain the final volume, V2, as shown below:

Thus, by plugging in the initial molarity, initial volume and final molarity (0.587 M) we obtain:

It means we need to add:

Of diluent water.
Regards!