Particles vibrate parallel to the direction the sound travels. It's a longitudinal wave.
Answer:
692.31 N
Explanation:
Applying,
F = ma............... Equation 1
Where F = Average force required to stop the player, m = mass of the player, a = acceleration of the player
But,
a = (v-u)/t............ Equation 2
Where v = final velocity, u = initial velocity, t = time.
Substitute equation 2 into equation 1
F = m(v-u)/t............ Equation 3
From the question,
Given: m = 75 kg, u = 6.0 m/s, v = 0 m/s (to stop), t = 0.65 s
Substitute these values into equation 3
F = 75(0-6)/0.65
F = -692.31 N
Hence the average force required to stop the player is 692.31 N
The answer would be hands! hope this helps
Answer:
v = 2.18m/s
Explanation:
In order to calculate the speed of Betty and her dog you take into account the law of momentum conservation. The total momentum before Betty catches her dog must be equal to the total momentum after.
Then you have:
(1)
M: mass Betty = 40kg
m: mass of the dog = 15kg
v1o: initial speed of Betty = 3.0m/s
v2o: initial speed of the dog = 0 m/s
v: speed of both Betty and her dog = ?
You solve the equation (1) for v:

The speed fo both Betty and her dog is 2.18m/s