4x + 2y = 8 (1)
8x + 4y = -4y (2)
A) Two lines are parallel if they have the same gradient
- putting both equations into the gradient- intercept form ( y = mx + c where m is the gradient)
(1) 4x + 2y = 8
2y = 8 - 4x
y = -2x + 4
(2) 8x + 4y = -4y
<span> </span>8x = -4y - 4y
y =

y = -x
<span>
Thus the gradient of the two equations are different and as such the two lines are not parallel</span>
B) When two lines are perpendicular, the product of their gradient is -1

p = (-2) * (-1)
p = 2
<span> ∴
the two lines are not perpendicular either.</span>
Thus these lines are SKEWED LINES
Answer:
see attached
Step-by-step explanation:
I find it convenient to let a graphing calculator draw the graph (attached).
__
If you're drawing the graph by hand, there are a couple of strategies that can be useful.
The first equation is almost in slope-intercept form. Dividing it by 2 will put it in that form:
y = 2x -4
This tells you that the y-intercept, (0, -4) is a point on the graph, as is the point that is up 2 and right 1 from there: (1, -2). A line through those points completes the graph.
__
The second equation is in standard form, so the x- and y-intercepts are easily found. One way to do that is to divide by the constant on the right to get ...
x/2 +y/3 = 1
The denominators of the x-term and the y-term are the x-intercept and the y-intercept, respectively. If that is too mind-bending, you can simply set x=0 to find the y-intercept:
0 +2y = 6
y = 6/2 = 3
and set y=0 to find the x-intercept
3x +0 = 6
x = 6/3 = 2
Plot the intercepts and draw the line through them for the graph of this equation.
___
Here, we have suggested graphing strategies that don't involve a lot of manipulation of the equations. The idea is to get there as quickly as possible with a minimum of mistakes.
Answer:
Step-by-step explanation:
Yes so i do need to doing the times and multipics then get a fraction then u will get tot eh answer
Answer:

Step-by-step explanation:
we are given a quadratic function

we want to figure out the minimum value of the function
to do so we need to figure out the minimum value of x in the case we can consider the following formula:

the given function is in the standard form i.e

so we acquire:
thus substitute:

simplify multiplication:

simply division:

plug in the value of minimum x to the given function:

simplify square:

simplify multiplication:

simplify:

hence,
the minimum value of the function is -155