Answer: Energy can neither be created nor destroyed, rather it is converted from one form to another
Explanation:
The principle of conversation of energy explains how energy is conserved in nature by being converted from one form to another such that no energy is created nor destroyed.
Practical examples include:
- electrical pressing iron that converts electrical energy to heat energy
- solar panels that converts solar energy to electrical energy
- Car batteries that converts chemical energy to light energy etc
Parallel circuit
Advandages: 1. Every unit that is connected in a parallel circuit gets equal amount of voltage.
2. It becomes easy to connect or disconnect a new element without affecting the working of other elements.
3. If any fault happened to the circuit, then also the current is able to pass through the circuit through different paths.
Disadvantages: 1. It requires the use of lot of wires.
2. We cannot increase or multiply the voltage in a parallel circuit.
3. Parallel connection fails at the time when it is required to pass exactly same amount of current through the units.
series circuit
Advantages: 1. Series circuits do not overheat easily. This makes them very useful in the case of something that might be around a potentially flammable source, like dry plants or cloth.
2. Series circuits are easy to learn and to make. Their simple design is easy to understand, and this means that it’s simple to conduct repairs .
3. we can add more power devices, they have a higher output in terms of voltage .
4. The current that flows in a series circuit has to flow through every component in the circuit. Therefore, all of the components in a series connection carry the same current.
Disadvantages: 1.If one point breaks in the series circuit,the total circuit will break.
2. As the number of components in a circuit increases ,greater will be the circuit resistance.
Answer:
The least uncertainty in the momentum component px is 1 × 10⁻²³ kg.m.s⁻¹.
Explanation:
According to Heisenberg's uncertainty principle, the uncertainty in the position of an electron (σx) and the uncertainty in its linear momentum (σpx) are complementary variables and are related through the following expression.
σx . σpx ≥ h/4π
where,
h is the Planck´s constant
If σx = 5 × 10⁻¹²m,
5 × 10⁻¹²m . σpx ≥ 6.63 × 10⁻³⁴ kg.m².s⁻¹/4π
σpx ≥ 1 × 10⁻²³ kg.m.s⁻¹