Answer:
Explanation:
The football players collide in a completely inelastic collision, in other words they have the same velocity after the collision, this velocity has a magnitude V=1.6m/s.
We need to use the conservation of momentum Law, the total momentum is the same before and after the collision, at the initial point the receiver does not have any speed
(1)
We solve in order to find the receiver mass:
Here we know that
now from kinematics we have
now from above all values we have
so final angular speed is -12.6 rad/s
Answer:
In physics, the kinetic energy (KE) of an object is the energy that it possesses due to its motion
In classical mechanics, the gravitational potential at a location is equal to the work (energy transferred) per unit mass that would be needed to move an object to that location from a fixed reference location. It is analogous to the electric potential with mass playing the role of charge. The reference location, where the potential is zero, is by convention infinitely far away from any mass, resulting in a negative potential at any finite distance.
In mathematics, the gravitational potential is also known as the Newtonian potential and is fundamental in the study of potential theory. It may also be used for solving the electrostatic and magnetostatic fields generated by uniformly charged or polarized ellipsoidal bodies
Answer:
Explanation:
When the central shaft rotates , the seat along with passenger also rotates . Their rotation requires a centripetal force of mw²R where m is mass of the passenger and w is the angular velocity and R is radius of the circle in which the passenger rotates.
This force is provided by a component of T , the tension in the rope from which the passenger hangs . If θ be the angle the rope makes with horizontal ,
T cos θ will provide the centripetal force . So
Tcosθ = mw²R
Tsinθ component will balance the weight .
Tsinθ = mg
Dividing the two equation
Tanθ =
Hence for a given w , θ depends upon g or weight .
Answer:
It will take 8.80 sec to fall from the building
Explanation:
We have given height pf the state building h = 380 m
Initial velocity will be 0 m /sec
So u = 0 m/sec
Acceleration due to gravity
We have to find the fall time
According to second equation of motion
So
t = 8.80 sec