Assuming you mean sqrt(-144, we can use some properties of square roots to figure this out. sqrt(x*y) = sqrt(x) * sqrt(y)
We have sqrt(-1*144) = sqrt(-1) * sqrt(144). That would be i * 12, which is 12i.
There’s no attachment to this question and it can’t be answered without the attachment
Answer:
125/6(In(x-25)) - 5/6(In(x+5))+C
Step-by-step explanation:
∫x2/x1−20x2−125dx
Should be
∫x²/(x²−20x−125)dx
First of all let's factorize the denominator.
x²−20x−125= x²+5x-25x-125
x²−20x−125= x(x+5) -25(x+5)
x²−20x−125= (x-25)(x+5)
∫x²/(x²−20x−125)dx= ∫x²/((x-25)(x+5))dx
x²/(x²−20x−125) =x²/((x-25)(x+5))
x²/((x-25)(x+5))= a/(x-25) +b/(x+5)
x²/= a(x+5) + b(x-25)
Let x=25
625 = a30
a= 625/30
a= 125/6
Let x= -5
25 = -30b
b= 25/-30
b= -5/6
x²/((x-25)(x+5))= 125/6(x-25) -5/6(x+5)
∫x²/(x²−20x−125)dx
=∫125/6(x-25) -∫5/6(x+5) Dx
= 125/6(In(x-25)) - 5/6(In(x+5))+C
The answer is boxed in. follow the arrows.
The final answer for this is 4x^2-25y^2.