Pushing a broke down car, even done by more than one person, is difficult especially if the distance to be covered is quite far. A car is heavy and it requires a lot of force to start the car moving. This is because the inertia of the car to remain at rest is great. Additionally, the force applied in pushing the car must be greater than the frictional force to cause it to accelerate. The frictional force is dependent on the mass of the object which means that the frictional force acting on the car is also great. Finally, with every push of the car, the frictional force will always be present and acting on the opposite direction. The push that will be supplied must be sustained all throughout.
Answer:
The wheelbarrow's wheel and axle help the wheelbarrow to move without friction thus making it easier to push or pull. That's why it will be easier to lift a load in wheel barrow of the load is transferred towards the wheel.
Answer:
<h2>132 N</h2>
Explanation:
The force acting on an object given it's mass and acceleration can be found by using the formula
force = mass × acceleration
From the question we have
force = 66 × 2
We have the final answer as
<h3>132 N</h3>
Hope this helps you
The distance is 30 km and the displacement is 22.4 km North East
Answer:
Power factor = 0.87 (Approx)
Explanation:
Given:
Load = 1 Kw = 1000 watt
Current (I) = 5 A
Supply (V) = 230 V
Find:
Power factor.
Computation:
Power factor = watts / (V)(I)
Power factor = 1,000 / (230)(5)
Power factor = 1,000 / (1,150)
Power factor = 0.8695
Power factor = 0.87 (Approx)