Answer:
Energy
Explanation:
C6H12O6 is glucose and the primary function of glucose is to provide energy.
<span>Determine the root-mean-square sped of CO2 molecules that have an average Kinetic Energy of 4.21x10^-21 J per molecule. Write your answer to 3 sig figs.
</span><span>
E = 1/2 m v^2
If you substitute into this formula, you will get out the root-mean-square speed.
If energy is Joules, the mass should be in kg, and the speed will be in m/s.
1 mol of CO2 is 44.0 g, or 4.40 x 10^1 g or 4.40 x 10^-2 kg.
If you divide this by Avagadro's constant, you will get the average mass of a CO2 molecule.
4.40 x 10^-2 kg / 6.02 x 10^23 = 7.31 x 10^-26 kg
So, if E = 1/2 mv^2
</span>v^2 = 2E/m = 2 (4.21x10^-21 J)/7.31 x 10^-26 kg = 115184.68
Take the square root of that, and you get the answer 339 m/s.
A catalyst is a chemical that increases the rate of a chemical reaction without itself being changed by the reaction. The fact that they aren't changed by participating in a reaction distinguishes catalysts from substrates, which are the reactants on which catalysts work. Enzymes catalyze biochemical reactions.
Answer:
<em>a)</em> <em>1.392 x 10^6 g/cm^3</em>
<em>b) 8.69 x 10^7 lb/ft^3</em>
<em></em>
Explanation:
mass of the star m = 2.0 x 10^36 kg
radius of the star (assumed to be spherical) r = 7.0 x 10^5 km = 7.0 x 10^8 m
The density of substance ρ = mass/volume
The volume of the star = volume of a sphere = 
==> V =
= 1.437 x 10^27 m^3
density of the star ρ = (2.0 x 10^36)/(1.437 x 10^27) = 1.392 x 10^9 kg/m^3
in g/cm^3 = (1.392 x 10^9)/1000 = <em>1.392 x 10^6 g/cm^3</em>
in lb/ft^3 = (1.392 x 10^9)/16.018 = <em>8.69 x 10^7 lb/ft^3</em>
Answer : 1.12 grams
Yo find the mass of the sample, you take the increased mass and subtract the original mass.
6.130 - 5.010 = 1.12