Molecular structure. Isomers have the same formula, so there is the same elements in both. But they have a different molecular structure and when drawn they look different
Answer:
order = SrS > SrCl2 > RbCl > CsBr
Explanation:
Comparison of the melting points of compounds is basically dependent on the charge on their cation and anion, the more the charges on the cation and anion, the stronger and greater the force of attraction and as such the melting point will be relatively higher as well.
The ionic radii is also another factor to be considered, the more the distance between ions, the lesser the bond strength and the lesser the melting point.
from the options, in terms of ionic radii SrS > SrCl2 and RbCl > CsBr
also both SrS and SrCl2 have more charges on their ions compared to RbCl and CsBr and as such the arrangement of the highest melting point will be in the order SrS > SrCl2 > RbCl > CsBr.
J. J. Thomson discovered electron by performing an experiment using cathode ray tubes. High voltage across is applied across two electrodes at that causes a beam of particles to flow from the the negatively-charged electrode that is cathode to the positively-charged electrode that is anode. Properties of the particles, are tested using two oppositely-charged electric plates around the cathode ray. The cathode ray was deflected away from the negatively-charged electric plate and towards the positively-charged plate. This indicated that the cathode ray was composed of negatively-charged particles. And these negatively charged particles are called electrons.
Answer:

Explanation:
Hello,
In this case, since the given 5-M concentration of magnesium chloride is expressed as:

We can notice that one mole of salt contains two moles of chloride ions as the subscript of chlorine is two, in such a way, with the volume of solution we obtain the moles of chloride ions as shown below:

Best regards.
Answer:
60 J
Explanation:
The law of conservation of energy states that energy is neither created nor destroyed, just converted into different forms. This means the total mechanical energy of the object at point A will be the same as the total mechanical energy at point B, and the question tells us the total of that mechanical energy is 150 J. Note we are assuming no energy is lost from the system as heat.
At point B, if the potential energy is 90 J, the remainder of the 150 J total must be kinetic energy. KE = 150 J - 90 J = 60 J.