The answer is C, because the water molecules are evaporating and the salt molecules are staying the same.
Answer:
Part A:
The proton has a smaller wavelength than the electron.
<
Part B:
The proton has a smaller wavelength than the electron.
<
Explanation:
The wavelength of each particle can be determined by means of the De Broglie equation.
(1)
Where h is the Planck's constant and p is the momentum.
(2)
Part A
Case for the electron:
![\lambda = \frac{6.624x10^{-34} J.s}{(9.11x10^{-31}Kg)(6.55x10^{6}m/s)}](https://tex.z-dn.net/?f=%5Clambda%20%3D%20%5Cfrac%7B6.624x10%5E%7B-34%7D%20J.s%7D%7B%289.11x10%5E%7B-31%7DKg%29%286.55x10%5E%7B6%7Dm%2Fs%29%7D)
But ![J = Kg.m^{2}/s^{2}](https://tex.z-dn.net/?f=J%20%3D%20Kg.m%5E%7B2%7D%2Fs%5E%7B2%7D)
![\lambda = \frac{6.624x10^{-34}Kg.m^{2}/s^{2}.s}{(9.11x10^{-31}Kg)(6.55x10^{6}m/s)}](https://tex.z-dn.net/?f=%5Clambda%20%3D%20%5Cfrac%7B6.624x10%5E%7B-34%7DKg.m%5E%7B2%7D%2Fs%5E%7B2%7D.s%7D%7B%289.11x10%5E%7B-31%7DKg%29%286.55x10%5E%7B6%7Dm%2Fs%29%7D)
![\lambda = 1.10x10^{-10}m](https://tex.z-dn.net/?f=%5Clambda%20%3D%201.10x10%5E%7B-10%7Dm)
Case for the proton:
![\lambda = \frac{6.624x10^{-34}Kg.m^{2}/s^{2}.s}{(1.67x10^{-27}Kg)(6.55x10^{6}m/s)}](https://tex.z-dn.net/?f=%5Clambda%20%3D%20%5Cfrac%7B6.624x10%5E%7B-34%7DKg.m%5E%7B2%7D%2Fs%5E%7B2%7D.s%7D%7B%281.67x10%5E%7B-27%7DKg%29%286.55x10%5E%7B6%7Dm%2Fs%29%7D)
![\lambda = 6.05x10^{-14}m](https://tex.z-dn.net/?f=%5Clambda%20%3D%206.05x10%5E%7B-14%7Dm)
Hence, the proton has a smaller wavelength than the electron.
<em>Part B </em>
For part b, the wavelength of the electron and proton for that energy will be determined.
First, it is necessary to find the velocity associated to that kinetic energy:
![KE = \frac{1}{2}mv^{2}](https://tex.z-dn.net/?f=KE%20%3D%20%5Cfrac%7B1%7D%7B2%7Dmv%5E%7B2%7D)
![2KE = mv^{2}](https://tex.z-dn.net/?f=2KE%20%3D%20mv%5E%7B2%7D)
(3)
Case for the electron:
![v = \sqrt{\frac{2(7.89x10^{-15}J)}{9.11x10^{-31}Kg}}](https://tex.z-dn.net/?f=v%20%3D%20%5Csqrt%7B%5Cfrac%7B2%287.89x10%5E%7B-15%7DJ%29%7D%7B9.11x10%5E%7B-31%7DKg%7D%7D)
but
![v = \sqrt{\frac{2(7.89x10^{-15}kg \cdot m^{2}/s^{2})}{9.11x10^{-31}Kg}}](https://tex.z-dn.net/?f=v%20%3D%20%5Csqrt%7B%5Cfrac%7B2%287.89x10%5E%7B-15%7Dkg%20%5Ccdot%20m%5E%7B2%7D%2Fs%5E%7B2%7D%29%7D%7B9.11x10%5E%7B-31%7DKg%7D%7D)
![v = 1.316x10^{8}m/s](https://tex.z-dn.net/?f=v%20%3D%201.316x10%5E%7B8%7Dm%2Fs)
Then, equation 2 can be used:
![\lambda = 5.525x10^{-12}m](https://tex.z-dn.net/?f=%5Clambda%20%3D%205.525x10%5E%7B-12%7Dm)
Case for the proton :
![v = \sqrt{\frac{2(7.89x10^{-15}J)}{1.67x10^{-27}Kg}}](https://tex.z-dn.net/?f=v%20%3D%20%5Csqrt%7B%5Cfrac%7B2%287.89x10%5E%7B-15%7DJ%29%7D%7B1.67x10%5E%7B-27%7DKg%7D%7D)
But ![1J = kg \cdot m^{2}/s^{2}](https://tex.z-dn.net/?f=1J%20%3D%20kg%20%5Ccdot%20m%5E%7B2%7D%2Fs%5E%7B2%7D)
![v = \sqrt{\frac{2(7.89x10^{-15}kg \cdot m^{2}/s^{2})}{1.67x10^{-27}Kg}}](https://tex.z-dn.net/?f=v%20%3D%20%5Csqrt%7B%5Cfrac%7B2%287.89x10%5E%7B-15%7Dkg%20%5Ccdot%20m%5E%7B2%7D%2Fs%5E%7B2%7D%29%7D%7B1.67x10%5E%7B-27%7DKg%7D%7D)
![v = 3.07x10^{6}m/s](https://tex.z-dn.net/?f=v%20%3D%203.07x10%5E%7B6%7Dm%2Fs)
Then, equation 2 can be used:
![\lambda = \frac{6.624x10^{-34}Kg.m^{2}/s^{2}.s}{(1.67x10^{-27}Kg)(3.07x10^{6}m/s)}](https://tex.z-dn.net/?f=%5Clambda%20%3D%20%5Cfrac%7B6.624x10%5E%7B-34%7DKg.m%5E%7B2%7D%2Fs%5E%7B2%7D.s%7D%7B%281.67x10%5E%7B-27%7DKg%29%283.07x10%5E%7B6%7Dm%2Fs%29%7D)
Hence, the proton has a smaller wavelength than the electron.
Scalar quantities have only a magnitude. So the answer is scalar quantities.
The higher mass of a particle means it’ll be harder to move, slowing it down and the faster the particle is moving the higher the kinetic energy because there is more movement and pressure within the object with the energy