Answer:
The store energy in the inductor is 0.088 J
Explanation:
Given that,
Inductor = 100 mH
Resistance = 6.0 Ω
Voltage = 12 V
Internal resistance = 3.0 Ω
We need to calculate the current
Using ohm's law


Put the value into the formula


We need to calculate the store energy in the inductor



Hence, The store energy in the inductor is 0.088 J
Answer:
(A) 1.43secs
(B) -2.50m/s^2
Explanation:
A commuter backs her car out of her garage with an acceleration of 1.40m/s^2
(A) When the speed is 2.00m/s then, the time can be calculated as follows
t= Vf-Vo/a
The values given are a= 1.40m/s^2 , Vf= 2.00m/s, Vo= 0
= 2.00-0/1.40
= 2.00/1.40
= 1.43secs
(B) The deceleration when the time is 0.800secs can be calculated as follows
a= Vf-Vo/t
= 0-2.00/0.800
= -2.00/0.800
= -2.50m/s^2
I believe it would be Tendonitis
Opposite to the direction of the velocity which led it to its current position.
Explanation:
The direction of momentum when a vertically oscillating block comes to the rest momentarily will be opposite to the direction of the velocity that it has just followed to reach reach its current position.
The direction of change in momentum at the bottom will be upwards and at the top will be downwards.
The change in momentum is mathematically defined as:

where:
mass of the block
final velocity of the block
initial velocity of the block
When the block comes to rest it is due to the result of continuously decreasing velocity.
Electrons that are the highest energy level is called Valence Electrons