Answer:
Same direction: t=234s; d=6.175Km
Opposite direction: t=27.53s; d=0.73Km
Explanation:
If the automobile and the train are traveling in the same direction, then the automobile speed relative to the train will be
(<em>the train must see the car advancing at a lower speed</em>), where
is the speed of the automobile and
the speed of the train.
So we have
.
So the train (<em>anyone in fact</em>) will watch the automobile trying to cover the lenght of the train L at that relative speed. The time required to do this will be:

And in that time the car would have traveled (<em>relative to the ground</em>):

If they are traveling in opposite directions, <u>we have to do all the same</u> but using
(<em>the train must see the car advancing at a faster speed</em>), so repeating the process:



The acceleration of the object which moves from an initial step to a full halt given the distance traveled can be calculated through the equation,
d = v² / 2a
where d is distance, v is the velocity, and a is acceleration
Substituting the known values,
180 = (22.2 m/s)² / 2(a)
The value of a is equal to 1.369 m/s²
The force needed for the object to be stopped is equal to the product of the mass and the acceleration.
F = (1300 kg)(1.369 m/s²)
F = 1779.7 N
Answer:
gravitational potential energy:
GPE = m g h
kinetic energy:
KE = 1/2 m v^2
Hi there
Definition of heat
the quality of being hot; high temperature.