Use Newton's second law. The net force on the hero is
∑ <em>F</em> = <em>T</em> - <em>m g</em> = <em>m</em> (2.00 m/s²)
where
• <em>T</em> = tension in the rope
• <em>m</em> = 75.0 kg = mass of the hero
• <em>g</em> = 9.80 m/s² = acceleration due to gravity
Solve for <em>T</em> :
<em>T</em> = (75.0 kg)<em> </em>(<em>g</em> + 2.00 m/s²) = 885 N
The answer is A I had this question. Before
Answer
given,
mass of the ski = 75 Kg
speed of the skier, v = 3 m/s
time = 1.50 min = 90 s
angle of inclination, θ = 40°
distance = s x t
= 3 x 90 = 270 m
a) W = F. d cos θ
W = mg. d cos θ
W = 75 x 9.8 x 270 x cos 40°
W = 152021.52 J
work is done by the ski lift is equal to 152021.52 J
b) Power extended by the ski


P = 1689.13 Watt.
power is expended by the ski lift is equal to 1689.13 W.
The answer would be B. :)
Answer:
Explanation:
If the work done on the cart is NET work
Then the work will result in an increase in kinetic energy
KE₀ + W = KE₁
½mv₀² + W = ½mv₁²
½(0.80)(0.61²) + 0.91 = ½(0.80)v₁²
v₁ = 1.626991...
v₁ = 1.6 m/s