I would say C.
Developing a plan is important because it will motivate you and tell you when to get things done. It is the most efficient
Hope this helped :)
Answer: 1,500m/s
Explanation:
Relationship existing between velocity of a wave (v), wavelength(¶) and frequency(f) is
v = f¶... (1)
Since Frequency (f) is the reciprocal of the period (T);
Frequency = 1/Period i.e F = 1/T... (2)
Substituting equation 2 into 1 we have;
v = 1/T × ¶
v = ¶/T
Given wavelength ¶ = 9m
Period T = 0.006s
v = 9/0.006
v = 1,500m/s
The velocity of the wave will be 1,500m/s
Answer:
the answer is The pneumatic mechanical device can only be used as a de-icing device.
Explanation:
An ice protection system prevents the formation of ice, or enables the aircraft to shed the ice before it can grow to a dangerous thickness. Ice protection systems are designed to keep atmospheric ice from accumulating on aircraft surfaces such as wings, propellers and engine intakes.
The pneumatic mechanical device is the Pneumatic deicing boots which was invented by the Goodrich Corporation in 1923. The pneumatic boot is usually made of layers of rubber, with one or more air chambers between the layers.
Any design which utilizes either a mechanical means of breaking the bond of ice to the surface, or which operates on a periodic cycle, is necessarily a de-ice system.
Answer:
The first part can be solved via conservation of energy.

For the second part,
the free body diagram of the car should be as follows:
- weight in the downwards direction
- normal force of the track to the car in the downwards direction
The total force should be equal to the centripetal force by Newton's Second Law.

where
because we are looking for the case where the car loses contact.

Now we know the minimum velocity that the car should have. Using the energy conservation found in the first part, we can calculate the minimum height.

Explanation:
The point that might confuse you in this question is the direction of the normal force at the top of the loop.
We usually use the normal force opposite to the weight. However, normal force is the force that the road exerts on us. Imagine that the car goes through the loop very very fast. Its tires will feel a great amount of normal force, if its velocity is quite high. By the same logic, if its velocity is too low, it might not feel a normal force at all, which means losing contact with the track.
Answer:
3 Cycles
Explanation:
Every cycle on a cosine function are marked by the completion of 5 key points when moving along the x-axis:
(5, 0, -5, 0, 5)
This cycle has a frequency of 2, occurring once every second, thus answering our question easily.