<span>In direct current (DC), the electric charge (current) only flows in one direction. Electric charge in alternating current (AC), on the other hand, changes direction periodically. The voltage in AC circuits also periodically reverses because the current changes direction.</span>
Answer:
CGS means Centimeter Gram Second while FPS means Foot Pounds Second
Explanation:
FPS is the standard used to measurement of length, mass and time. The unit of length is foot.
The time is calculated as the unit of seconds. CGS is the measurement of length, mass and time in units of centimeter, gram and second respectively
It could never actually happen like this, but the question is
looking for you to 'conserve' the momentum.
Momentum of a moving object is (mass) x (velocity).
Like velocity, momentum has a direction.
Momentum is one of those things that's 'conserved'.
That means that momentum can't appear out of nowhere, and
it doesn't disappear. The total after the collision is the same as
the total was before the collision.
Momentum of the skinny player:
(70 kg) x (3 m/s north) = 210 kg-m/s north.
Momentum of the heavy player:
(80 kg) x (1.5 m/s south) = 120 kg-m/s south .
Total momentum before the collision is
(210 kg-m/s north) + (120 kg-m/s south)
= 90 kg-m/s north .
It has to be the same after the collision.
(mass) x (velocity) = 90 kg-m/s north.
The mass after the collision is 150 kg, because they get
tangled up and stuck together, and they move together.
(150 kg) x (velocity) = 90 kg-m/s north .
Divide each side
by 150 kg : velocity = (90 kg-m/s north) / (150 kg)
= (90/150) (kg-m/s / kg north)
= 0.6 m/s north .
Answer:
Star A is closer than Star B
Explanation:
As we know that in parallax method of distance measurement the angle subtended by the star when it covers a distance of one Parsec arc length, it is known as parallax angle
Here we can say

so we have

so here we have
angle subtended by Star A = 1 arc sec
angle subtended by star B = 0.75 arc sec
now we have
distance for star A is given as

distance of star B is given as

So star A is closer than star B
To solve this problem we will begin by finding the pressure through density and average depth. Later we will find the Force, by means of the relation of the pressure and the area.

Here,
h = Depth average
= Density
Moreover,

Replacing,


Finally the force


