Answer:
μsmín = 0.1
Explanation:
- There are three external forces acting on the riders, two in the vertical direction that oppose each other, the force due to gravity (which we call weight) and the friction force.
- This friction force has a maximum value, that can be written as follows:

where μs is the coefficient of static friction, and Fn is the normal force,
perpendicular to the wall and aiming to the center of rotation.
- This force is the only force acting in the horizontal direction, but, at the same time, is the force that keeps the riders rotating, which is the centripetal force.
- This force has the following general expression:

where ω is the angular velocity of the riders, and r the distance to the
center of rotation (the radius of the circle), and m the mass of the
riders.
Since Fc is actually Fn, we can replace the right side of (2) in (1), as
follows:

- When the riders are on the verge of sliding down, this force must be equal to the weight Fg, so we can write the following equation:

- (The coefficient of static friction is the minimum possible, due to any value less than it would cause the riders to slide down)
- Cancelling the masses on both sides of (4), we get:

- Prior to solve (5) we need to convert ω from rev/min to rad/sec, as follows:

- Replacing by the givens in (5), we can solve for μsmín, as follows:

Answer:
the heavier skater has less momentum
hope it is helpful to you
Answer:
. Doppler ultrasound is based on absorption of sound, and other
ultrasound technology is based on reflection.D.
Explanation:
Acceleration (magnitude anyway) = (change in speed) / (time for the change) .
Change in speed = (10 - 30) = -20 m/s
Time for the change = 4.0sec
Magnitude of acceleration = -20/4 = <em>-5 m/s² </em>
Answer:
Contemporary light microscopes are able to magnify objects up to about a thousand times. Since most cells are between 1 and 100 μm in diameter, they can be observed by light microscopy, as can some of the larger subcellular organelles, such as nuclei, chloroplasts, and mitochondria.
A cell is the smallest unit of a living thing. A living thing, whether made of one cell (like bacteria) or many cells (like a human), is called an organism. Thus, cells are the basic building blocks of all organisms.
Cells have many structures inside of them called organelles. These organelles are like the organs in a human and they help the cell stay alive. Each organelle has it's own specific function to help the cell survive. The nucleus of a eukaryotic cell directs the cell's activities and stores DNA.
If the cell grows beyond a certain limit, not enough material will be able to cross the membrane fast enough to accommodate the increased cellular volume. When this happens, the cell must divide into smaller cells with favorable surface area/volume ratios, or cease to function.
Explanation: