the answer is B. Atmosphere
Not sure if this is correct but i would choose the steel tray.
Answer is: the atom is the smallest known particle of matter.
John Dalton claimed that atom is indestructible and a<span>ll atoms of a given element are identical in mass and properties.
</span>Thomson discovered electron and found the first evidence for isotopes<span> of a stable element.</span>
Answer:
The specific heat capacity of the object is 50 J/g°C ( option 4 is correct)
Explanation:
Step 1: Data given
Initial temperature = 10.0 °C
Final temperature = 25.0 °C
Energy required = 30000 J
Mass of the object = 40.0 grams
Step 2: Calculate the specific heat capacity of the object
Q = m* c * ΔT
⇒With Q = the heat required = 30000 J
⇒with m = the mass of the object = 40.0 grams
⇒with c = the specific heat capacity of the object = TO BE DETERMINED
⇒with ΔT = The change in temperature = T2 - T2 = 25.0 °C - 10.0°C = 15.0 °C
30000 J = 40.0 g * c * 15.0 °C
c = 30000 J / (40.0 g * 15.0 °C)
c = 50 J/g°C
The specific heat capacity of the object is 50 J/g°C ( option 4 is correct)
Answer:
Length = 393pm, Density = 21.3 g/cm^3.
Explanation:
From the question above, we have the following parameters or data which is going to aid in solving the above Question.
=> The radius of a platinum atom = 139 pm.
Therefore, the length can be calculated by making use of the formula given below:
Length = 2 √( 2r) = 2 × √ (2 × 139 × 10^-12m ) = 393 × 10^-10 m = 393pm.
The density can be calculated by making use of the chemical formula given below:
Density = mass ÷ volume = (195.064/ 6.02 × 10^23) ÷ (3.93 × 10^-10/ 10^-2) = 21.3 g/cm^3.