a. 1,4332 g
b. 7.54~g
<h3>Further explanation</h3>
Given
Reaction
MgCl2 (s) + 2 AgNO3 (aq) → Mg(NO3)2 (aq) + 2 AgCl (s)
20 cm of 2.5 mol/dm^3 of MgCl2
20 cm of 2.5 g/dm^3 of MgCl2
Required
the mass of silver chloride - AgCl
Solution
a. mol MgCl2 :
From equation, mol AgCl = 2 x mol MgCl2=2 x 0.05=0.1
mass AgCl(MW=143,32 g/mol)= 0.1 x 143,32=1,4332 g
b. mol MgCl2 (MW=95.211 /mol):
From equation, mol AgCl = 2 x mol MgCl2=2 x 0.0263=0.0526
mass AgCl(MW=143,32 g/mol)= 0.0526 x 143,32=7.54~g
Answer:
Explanation:
Henry's law states that the solubility of a gas is directly proportional to its partial pressure. The equation may be written as:
Where is Henry's law constant.
Our strategy will be to identify the Henry's law constant for oxygen given the initial conditions and then use it to find the solubility at different conditions.
Given initially:
Also, at sea level, we have an atmospheric pressure of:
Given mole fraction:
According to Dalton's law of partial pressures, the partial pressure of oxygen is equal to the product of its mole fraction and the total pressure:
Then the equation becomes:
Solve for :
Now we're given that at an altitude of 12,000 ft, the atmospheric pressure is now:
Apply Henry's law using the constant we found:
Answer is: 7,826 kg of cryolite.
Chemical reaction: Al₂O₃ + 6NaOH + 12HF → 2Na₃AlF₆ + 9H₂<span>O.
m(</span>Al₂O₃) = 12,1 kg = 12100 g.
n(Al₂O₃) = m(Al₂O₃) ÷ M(Al₂O₃).
n(Al₂O₃) = 12100 g ÷ 101,96 g/mol = 111,86 mol; limiting reactant.
m(NaOH) = 60,4 kg = 60400 g.
n(NaOH) = 60400 g ÷ 40 g/mol.
n(NaOH) = 1510 mol.
m(HF) = 60,4 kg = 60400 g.
n(HF) = 60400 g ÷ 20 g/mol = 3020 mol.
From chemical reaction: n(Al₂O₃) : n(Na₃AlF₆) = 6 : 2.
n(Na₃AlF₆) = 2 ·111,86 mol ÷ 6 = 37,28 mol.
m(Na₃AlF₆) = 37,28 mol · 209,94 g/mol.
m(Na₃AlF₆) = 7826,56 g = 7,826 kg.
the particles from solid to liquid start to move around faster then it was at the first state