Answer:
hiiiiiiiiiiiiiiiiiiiiiiiiii
Answers:
(a) 30.55 °C
(b) 298 K and 77°F
(c) 204.44 °C and 477.44 K
(d) -320.8 °F and -196 °C
Explanation:
Converting °C into °F;
°F = °C × 1.8 + 32
Converting °F into °C;
°C = °F - 32 ÷ 1,8
Converting °C into K;
K = °C + 273
Converting K into °C;
°C = K - 273
Elements in the same group have the same amount of electrons.
Elements in the same period have the same amount of atomic orbits.
Hope this helps!
Answer : Electron P has greater energy difference than the Electron N.
Explanation :
Wavelength range of violet light = 400 - 500 nm
Wavelength range of orange light = 600 - 700 nm
The Planck's equation is,

where,
E = energy of light
c = speed of light
= wavelength of light
According to the Planck's equation, wavelength and energy follow inverse relation. As the wavelength increases, energy decreases.
From the given spectrum, the wavelength of violet light is less. We conclude that When electron P gives violet light on transition it means that energy difference between the energy level was high.
From the given spectrum, the wavelength of orange light is more. We conclude that When electron N gives orange light on transition it means that energy difference between the energy level was low.
So, Electron P which gives violet light on transition has greater energy difference than the Electron N.
Answer: Gases are complicated. They're full of billions and billions of energetic gas molecules that can collide and possibly interact with each other. Since it's hard to exactly describe a real gas, people created the concept of an Ideal gas as an approximation that helps us model and predict the behavior of real gases. The term ideal gas refers to a hypothetical gas composed of molecules which follow a few rules:
Ideal gas molecules do not attract or repel each other. The only interaction between ideal gas molecules would be an elastic collision upon impact with each other or an elastic collision with the walls of the container. [What is an elastic collision?]
Ideal gas molecules themselves take up no volume. The gas takes up volume since the molecules expand into a large region of space, but the Ideal gas molecules are approximated as point particles that have no volume in and of themselves.
If this sounds too ideal to be true, you're right. There are no gases that are exactly ideal, but there are plenty of gases that are close enough that the concept of an ideal gas is an extremely useful approximation for many situations. In fact, for temperatures near room temperature and pressures near atmospheric pressure, many of the gases we care about are very nearly ideal.
If the pressure of the gas is too large (e.g. hundreds of times larger than atmospheric pressure), or the temperature is too low (e.g.
−
200
C
−200 Cminus, 200, start text, space, C, end text) there can be significant deviations from the ideal gas law.
Explanation: