1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
damaskus [11]
3 years ago
11

Question: A car (assumed to be a Ford Taurus) is traveling around a turn that is banked at 7 degrees. The turn has a radius of 2

9 m. The car has a mass of 1300 kg. The coefficient of static friction between the tires and the road is 0.68.
1. What is the "ideal speed?" That is, what speed would allow the car to make the turn without requiring friction?

2. What is the maximum speed the car can go around the turn without sliding?

Physics
1 answer:
AysviL [449]3 years ago
6 0

Answer:

Question: A car (assumed to be a Ford Taurus) is traveling around a turn that is banked at 7 degrees. The turn has a radius of 29 m. The car has a mass of 1300 kg. The coefficient of static friction between the tires and the road is 0.68.

1. What is the "ideal speed?" That is, what speed would allow the car to make the turn without requiring friction?

2. What is the maximum speed the car can go around the turn without sliding?

You might be interested in
How can we magnitise and demagnitise a magnet at the same time
damaskus [11]

Answer:

To develop a molecular clock, you need to find which of the following?

a sequence of molecules

the rate at which changes occur in a type of molecule

how much total change has occurred in a type of molecule from two different species

how many molecules a species has

Explanation:

s;s;

5 0
3 years ago
Read 2 more answers
Which of the following IS NOT a part of an electromagnet?
Agata [3.3K]
I'd go with electricity source. Good luck!!
3 0
3 years ago
A block lies on a plane raised an angle θ from the horizontal. Three forces act upon the block: F⃗ w, the force of gravity; F⃗ n
Verdich [7]

Answer:

YFy = 0 = Ffsinθ + Fncosθ - Fw

Explanation:

From the base of the vector Fn, draw a vertical line. the small angle between this line and Fn is also theta. The component of Fn in the vertical direction is Fncos(theta).

Take a moment to picture extreme cases. Sine is 0 at 0 and 1 at 90. Cosine is 1 at 0 and 0 at 90.

Tilt the incline so that the box is on a flat surface. How much of the gravitational force is along the x direction of the floor.

5 0
3 years ago
A running mountain lion can make a leap 10.0 m long, reaching a maximum height of 3.0 m.?a.What is the speed of the mountain lio
Arisa [49]

Answer:

What is the speed of the mountain lion as it leaves the ground?

9.98m/s

At what angle does it leave the ground?

50.16°

Explanation:

This is going to be long, so if you want to see how it was solved refer to the attached solution. If you want to know the step by step process, read on.

To solve this, you will need use two kinematic equations and SOHCAHTOA:

d = v_it + \dfrac{1}{2}at^{2}\\\\vf = vi + at

With these formulas, we can derive formulas for everything you need:

Things you need to remember:

  • A projectile at an angle has a x-component (horizontal movement) and y-component (vertical movement), which is the reason why it creates an angle.
  • Treat them separately.
  • At maximum height, the vertical final velocity is always 0 m/s going up. And initial vertical velocity is 0 m/s going down.
  • Horizontal movement is not influenced by gravity.
  • acceleration due to gravity (a) on Earth is constant at 9.8m/s

First we need to take your given:

10.0 m long (horizontal) and maximum height of 3.0m (vertical).

d_x=10.0m\\d_y=3.0m

What your problem is looking for is the initial velocity and the angle it left the ground.

Vi = ?     Θ =?

Vi here is the diagonal movement and do solve this, we need both the horizontal velocity and the vertical velocity.

Let's deal with the vertical components first:

We can use the second kinematic equation given to solve for the vertical initial velocity but we are missing time. So we use the first kinematic equation to derive a formula for time.

d_y=V_i_yt+\dfrac{1}{2}at^{2}

Since it is at maximum height at this point, we can assume that the lion is already making its way down so the initial vertical velocity would be 0 m/s. So we can reduce the formula:

d_y=0+\dfrac{1}{2}at^{2}

d_y=\dfrac{1}{2}at^{2}

From here we can derive the formula of time:

t=\sqrt{\dfrac{2d_y}{a}}

Now we just plug in what we know:

t=\sqrt{\dfrac{(2)(3.0m}{9.8m/s^2}}\\t=0.782s

Now that we know the time it takes to get from the highest point to the ground. The time going up is equal to the time going down, so we can use this time to solve for the intial scenario of going up.

vf_y=vi_y+at

Remember that going up the vertical final velocity is 0m/s, and remember that gravity is always moving downwards so it is negative.

0m/s=vi_y+-9.8m/s^{2}(0.782s)\\-vi_y=-9.8m/s^{2}(0.782s)\\-vi_y=-7.66m/s\\vi_y=7.66m/s

So we have our first initial vertical velocity:

Viy = 7.66m/s

Next we solve for the horizontal velocity. We use the same kinematic formula but replace it with x components. Remember that gravity has no influence horizontally so a = 0:

d_x=V_i_xt+\dfrac{1}{2}0m/s^{2}(t^{2})\\d_x=V_i_xt

But horizontally, it considers the time of flight, from the time it was released and the time it hits the ground. Also, like mentioned earlier the time going up is the same as going down, so if we combine them the total time in flight will be twice the time.

T= 2t

T = 2 (0.782s)

<em>T = 1.564s</em>

<em>So we use this in our formula:</em>

<em>d_x=V_i_xT\\\\10.0m=Vi_x(1.564s)\\\\\dfrac{10.0m}{1.564s}=V_i_x\\\\6.39m/s=V_i_x</em>

Vix=6.39m/s

Now we have the horizontal and the vertical component, we can solve for the diagonal initial velocity, or the velocity the mountain lion leapt and the angle, by creating a right triangles, using vectors (see attached)

To get the diagonal, you just use the Pythagorean theorem:

c²=a²+b²

Using it in the context of our problem:

Vi^{2}=Viy^2+Vix^2\\Vi^2=(7.66m/s)^2+(6.39m/s)^2\\\sqrt{Vi}=\sqrt{(7.66m/s)^2+(6.39m/s)^2}\\\\Vi=9.98m/s

The lion leapt at 9.98m/s

Using SOHCAHTOA, we know that we can TOA to solve for the angle, because we have the opposite and adjacent side:

Tan\theta=\dfrac{O}{A}\\\\Tan\theta=\dfrac{V_i_y}{V_i_x}\\\\\theta=Tan^{-1}\dfrac{V_i_y}{V_i_x}\\\\\theta=Tan^{-1}\dfrac{7.66m/s}{6.39m/s}\\\\\theta=50.17

The lion leapt at an angle of 50.16°.

6 0
3 years ago
Two identical cars A and B are at rest on a loading dock with brakes released. Car C, of a slightly different style but of the s
Nadusha1986 [10]

Answer:

Explanation:

Let the velocity after first collision be v₁ and v₂ of car A and B . car A will bounce back .

velocity of approach = 1.5 - 0 = 1.5

velocity of separation = v₁ + v₂

coefficient of restitution = velocity of separation / velocity of approach

.8 = v₁ + v₂ / 1.5

v₁ + v₂ = 1.2

applying law of conservation of momentum

m x 1.5 + 0 = mv₂ - mv₁

1.5 = v₂ - v₁

adding two equation

2 v ₂= 2.7

v₂ = 1.35 m /s

v₁ = - .15 m / s

During second collision , B will collide with stationary A . Same process will apply in this case also. Let velocity of B and A after collision be v₃ and v₄.

For second collision ,

coefficient of restitution = velocity of separation / velocity of approach

.5 = v₃ + v₄ / 1.35

v₃ + v₄ = .675

applying law of conservation of momentum

m x 1.35 + 0 = mv₄ - mv₃

1.35 = v₄ - v₃

adding two equation

2 v ₄= 2.025

v₄ = 1.0125 m /s

v₃ = - 0 .3375  m / s

3 0
3 years ago
Other questions:
  • If the cold temperature reservoir of a Carnot engine is held at a constant 306 K, what temperature should the hot reservoir be k
    13·1 answer
  • Low-mass and medium-mass stars eventually
    10·1 answer
  • Which of these changes would solidify a substance?
    7·1 answer
  • For your senior project, you would like to build a cyclotron that will accelerate protons to 10% of the speed of light. The larg
    11·1 answer
  • All scientists try to base their conclusions on
    6·2 answers
  • Which of the following is true of education in 1950
    12·1 answer
  • Which bird on the wire, the one with a mass of 50g or the one with a mass of 60g, has the most potential energy?
    8·1 answer
  • A ball is thrown vertically upwards with a velocity of 20 m s −1 from the top of a multistorey building of 25 m high. How high w
    8·1 answer
  • the magnitude of the electrical force acting between a +2.4x10-8c charge and 1+1.8x10-6 charge that are separated by 1.008m is
    7·1 answer
  • A truck is traveling at a speed of 50 km/h. What happens when the truck slows down?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!