Answer:
7.468 kN
Explanation:
Here the force is given in Newton
Some of the prefixes of the SI units are
kilo = 10³
Mega = 10⁶
Giga = 10⁹
Tera = 10¹²
The number is 7468.0
Here, the only solution where the number of significant figures is kilo. If any other prefix is chosen then the significant figures will increase.
1 kilonewton = 1000 Newton


So, 7468 N = 7.468 kN
Answer:
In free fall, mass is not relevant and there's no air resistance, so the acceleration the object is experimenting will be equal to the gravity exerted. If the object is falling on our planet, the value of gravity is approximately 9.81ms2 .
Answer:
e = Δφ / Δt induced emf is proportional to enclosed flux
Also φ = B * A flux is proportional to area and enclosed field
If the induced emf e increases with time than the flux and hence the magnetic field is increasing with time (replace B with G)
Since e = ΔG * A / Δt if e is linear then G must also be linear and be proportional to the time
Answer:
Answer for the question is given in the attachment.
Explanation:
Answer:
C.As the two objects touch, thermal energy flows as heat from the warmer block to the colder block until particles in both blocks move at the same rate and reach the same temperature.
Explanation:
Heat is the transfer of thermal energy from an object at higher temperature to an object at colder temperature.
The temperature of an object is a measure of how fast the particles in the object move: the higher its temperature, the faster the particles move, the higher the average kinetic energy of the particles in the object. As a result, the particles of the object at higher temperature tend to transfer more energy (called thermal energy) to the particles of the object at colder temperature by colliding with them: this process continues until the particles of the colder object reach the same average kinetic energy as the particles of the warmer object, and this means that the two objects have reached the same temperature.