The wavelength of the note is

. Since the speed of the wave is the speed of sound,

, the frequency of the note is

Then, we know that the frequency of a vibrating string is related to the tension T of the string and its length L by

where

is the linear mass density of our string.
Using the value of the tension, T=160 N, and the frequency we just found, we can calculate the length of the string, L:
A soccer ball is traveling at a velocity of 50 m/s. The kinetic energy of the ball is 500 J.The mass of the soccer ball is 0.4 kgs. This answer is derived from the formula K=1/2 MV^2.So velocity and kinetic energy are given from that mass of the ball is calculated.By substituting the values 500=1/2*M*50*50 which gives M=0.4 Kgs.<span>
</span>
Given:
u(initial velocity)=0
v(final velocity)= 10 m/s
t= 4 sec
Now we know that
v= u + at
Where v is the final velocity
u is the initial velocity
a is the acceleration measured in m/s^2
t is the time measured in sec
10=0+ax4
a=10/4
a=2.5 m/s^2
Not sure.can you give me a clue?
Explanation:
The time taken by a wave crest to travel a distance equal to the length of wave is known as wave period.
The relation between wave period and frequency is as follows.
T = \frac{1}{f}T=
f
1
where, T = time period
f = frequency
It is given that wave period is 18 seconds. Therefore, calculate the wave period as follows.
T = \frac{1}{f}T=
f
1
or, f = \frac{1}{T}f=
T
1
= \frac{1}{18 sec}
18sec
1
= 0.055 per second (1cycle per second = 1 Hertz)
or, f = 5.5 \times 10^{-2} hertz5.5×10 −2 hertz
<h3>Thus, we can conclude that the frequency of the wave is 5.5 \times 10^{-2} hertz5.5×10 −2 hertz .</h3>