To calcculate the braking force of the car moving, we use Newton's second law of motion which relates the acceleration and the force of an object moving. The force of an object moving is directly proportional to its acceleration and the proportionality constant is the mass of the object. It is expressed as:
Force = ma
Acceleration is the rate of change of the velocity of a moving object. We calculate acceleration from the velocity and the time given above.
a = (10 m/s) / 5 s = 2 m/s^2
So,
Force = ma
Force = 1000 kg ( 2 m/s^2 )
Force = 2000 kg m/s^2 or 2000 N
Answer:
Potential Energy = 294J, Kinetic Engergy = 48.02J
Explanation:
We have these formulas:
Potential Energy = mass * gravitational force * height (m) = 1 * 9.8 * 30 = 294(J)
Kinetic Energy = 1/2 * mass * velocity^2 = 1/2 * 1 * 9.8^2 = 48.02 (J)
As the rock falling at an acceleration of 9.8m/s^2 which means for each second, the rock increases 9.8m/s. I think we are missing time to find the instantaneous velocity, the formula is (initial displacement - final displacement)/ (initial time - final time) which will directly give the final answer for you.
Newton's second law of motion<span> can be formally stated as follows: The acceleration of an object as produced by a net </span>force<span> is directly proportional to the magnitude of the net </span>force, in the same direction as the netforce<span>, and inversely proportional to the mass of the object</span>
Answer:
For equilibrium the net torque on the rod must be zero. So the 100N forces should on either side of the pivot point i.e. one on the left and one the right, and in same direction.
Physical changes: breaking sticks, boiling the water
chemical changes: lighting the fire
(Breaking the wood does not change the substance of the wood , therefore it's a physical change. Water changing between solid, liquid, and gas form is always a physical change.)