costa rica does not have deserts hoped this helped and have a great day:)
Let us first know the given: Tennis ball has a mass of 0.003 kg, Soccer ball has a mass of 0.43 kg. Having the same velocity at 16 m/s. First the equation for momentum is P=MV P=Momentum M=Mass V=Velocity. Now let us have the solution for the momentum of tennis ball. Pt=0.003 x 16 m/s= ( kg-m/s ) I use the subscript "t" for tennis. Momentum of Soccer ball Ps= 0.43 x 13m/s = ( km-m/s). If we going to compare the momentum of both balls, the heavier object will surely have a greater momentum because it has a larger mass, unless otherwise the tennis ball with a lesser mass will have a greater velocity to be equal or greater than the momentum of a soccer ball.
Answer:
9)a
10) I think true
11)b
Explanation:
9)a. because it's told that the car is slowing down, the sum of the forces that are towards left, should be more than the ones that are towards right. if the car was gaining speed, "b" would have been correct. and if it was told that the car is moving without a change in the speed, "c" would have been correct.
10) if a moving object has a change of speed or direction, it would have an acceleration. now if a moving object experiences an unbalanced force, it'd either slow down, gain speed or change direction, and in all of the three possibilities it'd have an acceleration.
11) upward and downward forces are equal, and the sum of them would be 0N(because they have opposite directions). so they negate each other.
and the rightward force is 5N more than the leftward force. so the Net Force would be 5N.
-30+30-10+15=5N
if it is unclear or you need more explanation, ask freely.
Answer:
Mechanical energy is the energy that is possessed by an object due to its motion or due to its position. Mechanical energy can be either kinetic energy (energy of motion) or potential energy
Answer:
t = 2.58*10^-6 s
Explanation:
For a nonconducting sphere you have that the value of the electric field, depends of the region:

k: Coulomb's constant = 8.98*10^9 Nm^2/C^2
R: radius of the sphere = 10.0/2 = 5.0cm=0.005m
In this case you can assume that the proton is in the region for r > R. Furthermore you use the secon Newton law in order to find the acceleration of the proton produced by the force:

Due to the proton is just outside the surface you can use r=R and calculate the acceleration. Also, you take into account the charge density of the sphere in order to compute the total charge:

with this values of a you can use the following formula:

hence, the time that the proton takes to reach a speed of 2550km is 2.58*10^-6 s