Answer:
1.
a) 40 b) 8 c) 27 2/3 d) 4
2.
a) 93 b) -95 c) -87 d) -81
Answer:

General Formulas and Concepts:
<u>Symbols</u>
- e (Euler's number) ≈ 2.71828
<u>Algebra I</u>
- Exponential Rule [Multiplying]:

<u>Calculus</u>
Differentiation
- Derivatives
- Derivative Notation
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Integration
- Integrals
- Definite Integrals
- Integration Constant C
Integration Rule [Reverse Power Rule]: 
Integration Rule [Fundamental Theorem of Calculus 1]: 
Integration Property [Multiplied Constant]: 
U-Substitution
Integration by Parts: 
- [IBP] LIPET: Logs, inverses, Polynomials, Exponentials, Trig
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>

<u>Step 2: Integrate Pt. 1</u>
- [Integrand] Rewrite [Exponential Rule - Multiplying]:

- [Integral] Rewrite [Integration Property - Multiplied Constant]:

<u>Step 3: Integrate Pt. 2</u>
<em>Identify variables for u-solve.</em>
- Set <em>u</em>:

- [<em>u</em>] Differentiate [Basic Power Rule]:

- [<em>u</em>] Rewrite:
![\displaystyle x = \sqrt[3]{u}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20x%20%3D%20%5Csqrt%5B3%5D%7Bu%7D)
- [<em>du</em>] Rewrite:

<u>Step 4: Integrate Pt. 3</u>
- [Integral] U-Solve:
![\displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = e\int\limits^1_0 {x^5e^{(\sqrt[3]{u})^3}\frac{1}{3x^2}} \, du](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%5Climits%5E1_0%20%7Bx%5E5e%5E%7Bx%5E3%20%2B%201%7D%7D%20%5C%2C%20dx%20%3D%20e%5Cint%5Climits%5E1_0%20%7Bx%5E5e%5E%7B%28%5Csqrt%5B3%5D%7Bu%7D%29%5E3%7D%5Cfrac%7B1%7D%7B3x%5E2%7D%7D%20%5C%2C%20du)
- [Integral] Rewrite [Integration Property - Multiplied Constant]:
![\displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \frac{e}{3}\int\limits^1_0 {x^5e^{(\sqrt[3]{u})^3}\frac{1}{x^2}} \, du](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%5Climits%5E1_0%20%7Bx%5E5e%5E%7Bx%5E3%20%2B%201%7D%7D%20%5C%2C%20dx%20%3D%20%5Cfrac%7Be%7D%7B3%7D%5Cint%5Climits%5E1_0%20%7Bx%5E5e%5E%7B%28%5Csqrt%5B3%5D%7Bu%7D%29%5E3%7D%5Cfrac%7B1%7D%7Bx%5E2%7D%7D%20%5C%2C%20du)
- [Integral] Simplify:

- [Integrand] U-Solve:

<u>Step 5: integrate Pt. 4</u>
<em>Identify variables for integration by parts using LIPET.</em>
- Set <em>u</em>:

- [<em>u</em>] Differentiate [Basic Power Rule]:

- Set <em>dv</em>:

- [<em>dv</em>] Exponential Integration:

<u>Step 6: Integrate Pt. 5</u>
- [Integral] Integration by Parts:
![\displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \frac{e}{3} \bigg[ ue^u \bigg| \limits^1_0 - \int\limits^1_0 {e^u} \, du \bigg]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%5Climits%5E1_0%20%7Bx%5E5e%5E%7Bx%5E3%20%2B%201%7D%7D%20%5C%2C%20dx%20%3D%20%5Cfrac%7Be%7D%7B3%7D%20%5Cbigg%5B%20ue%5Eu%20%5Cbigg%7C%20%5Climits%5E1_0%20-%20%5Cint%5Climits%5E1_0%20%7Be%5Eu%7D%20%5C%2C%20du%20%5Cbigg%5D)
- [Integral] Exponential Integration:
![\displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \frac{e}{3} \bigg[ ue^u \bigg| \limits^1_0 - e^u \bigg| \limits^1_0 \bigg]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%5Climits%5E1_0%20%7Bx%5E5e%5E%7Bx%5E3%20%2B%201%7D%7D%20%5C%2C%20dx%20%3D%20%5Cfrac%7Be%7D%7B3%7D%20%5Cbigg%5B%20ue%5Eu%20%5Cbigg%7C%20%5Climits%5E1_0%20-%20e%5Eu%20%5Cbigg%7C%20%5Climits%5E1_0%20%5Cbigg%5D)
- Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:
![\displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \frac{e}{3}[ e - e ]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%5Climits%5E1_0%20%7Bx%5E5e%5E%7Bx%5E3%20%2B%201%7D%7D%20%5C%2C%20dx%20%3D%20%5Cfrac%7Be%7D%7B3%7D%5B%20e%20-%20e%20%5D)
- Simplify:

Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration
Book: College Calculus 10e
Y=k/x
2=k/8
k=16
the answer is A
Answer:
The diameter of the model is 14.4 inches.
Step-by-step explanation:
The Diameter of the moon = 2,160 miles
The scale on the model represents 1 in = 150 miles
Let the model represents k inches in 2,160 miles.
So, by the Ratio of Proportionality:

⇒
or, k = 14.4 inches
⇒On the scale 2160 miles is represented as 14.4 inches
Hence the diameter of the model is 14.4 inches.
Hi, you've asked an unclear question. However, I inferred you may want to know the actual number of students represented by the percentages of 27%, and 61%.
<u>Explanation:</u>
Finding percentage usually involves performing two operations; multiplication and division.
First, all (100%) of respondents said they watched TV at least at some point during the day.
Next, 27% of respondents stated that they only watched television during prime time hours, in which the actual number of students represented by the percentage is calculated by dividing 27 by 100 and multiplying by 1000 =
.
Finally, we are told 61% of respondents stated that they spend prime time hours in their dorm rooms. The actual number of students represented by the percentage is calculated by dividing 61 by 100 and multiplying by 1000 =
