1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
padilas [110]
3 years ago
10

Y = 1/2 x + 2 in both graphs

Mathematics
1 answer:
Mazyrski [523]3 years ago
3 0

Answer:

<u>x=2y-4</u>

Step-by-step explanation:

  • <em>Step number 1: 1/2x + 2 = 1 . y</em>
  • <em>step number 2: 1/2x + 2 = y</em>
  • <em>step number 3: 1/2x + 2 - 2 = y - 2</em>
  • <em>Step number 4: 1/2x =y</em>
  • <em>Step number 5: 2 . 1/2x= 2y - 2 .2</em>
  • <em>Step number 6: </em><u>x=2y-4</u>
<h3><em></em></h3>
You might be interested in
I WILL MARK AS BRAINLIEST! Solve for X and Y
konstantin123 [22]

Answer:

1.

a) 40  b) 8  c) 27  2/3  d) 4

2.

a) 93  b) -95  c) -87  d) -81

5 0
3 years ago
Read 2 more answers
Evaluate the following definite integral​
mihalych1998 [28]

Answer:

\displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \frac{e}{3}

General Formulas and Concepts:

<u>Symbols</u>

  • e (Euler's number) ≈ 2.71828

<u>Algebra I</u>

  • Exponential Rule [Multiplying]:                                                                     \displaystyle b^m \cdot b^n = b^{m + n}

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals
  • Definite Integrals
  • Integration Constant C

Integration Rule [Reverse Power Rule]:                                                               \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

  • U-Solve

Integration by Parts:                                                                                               \displaystyle \int {u} \, dv = uv - \int {v} \, du

  • [IBP] LIPET: Logs, inverses, Polynomials, Exponentials, Trig

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx

<u>Step 2: Integrate Pt. 1</u>

  1. [Integrand] Rewrite [Exponential Rule - Multiplying]:                                 \displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \int\limits^1_0 {x^5e^{x^3}e} \, dx
  2. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = e\int\limits^1_0 {x^5e^{x^3}} \, dx

<u>Step 3: Integrate Pt. 2</u>

<em>Identify variables for u-solve.</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle u = x^3
  2. [<em>u</em>] Differentiate [Basic Power Rule]:                                                             \displaystyle du = 3x^2 \ dx
  3. [<em>u</em>] Rewrite:                                                                                                     \displaystyle x = \sqrt[3]{u}
  4. [<em>du</em>] Rewrite:                                                                                                   \displaystyle dx = \frac{1}{3x^2} \ du

<u>Step 4: Integrate Pt. 3</u>

  1. [Integral] U-Solve:                                                                                         \displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = e\int\limits^1_0 {x^5e^{(\sqrt[3]{u})^3}\frac{1}{3x^2}} \, du
  2. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \frac{e}{3}\int\limits^1_0 {x^5e^{(\sqrt[3]{u})^3}\frac{1}{x^2}} \, du
  3. [Integral] Simplify:                                                                                         \displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \frac{e}{3}\int\limits^1_0 {x^3e^u} \, du
  4. [Integrand] U-Solve:                                                                                      \displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \frac{e}{3}\int\limits^1_0 {ue^u} \, du

<u>Step 5: integrate Pt. 4</u>

<em>Identify variables for integration by parts using LIPET.</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle u = u
  2. [<em>u</em>] Differentiate [Basic Power Rule]:                                                             \displaystyle du = du
  3. Set <em>dv</em>:                                                                                                           \displaystyle dv = e^u \ du
  4. [<em>dv</em>] Exponential Integration:                                                                         \displaystyle v = e^u

<u>Step 6: Integrate Pt. 5</u>

  1. [Integral] Integration by Parts:                                                                        \displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \frac{e}{3} \bigg[ ue^u \bigg| \limits^1_0 - \int\limits^1_0 {e^u} \, du \bigg]
  2. [Integral] Exponential Integration:                                                               \displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \frac{e}{3} \bigg[ ue^u \bigg| \limits^1_0 - e^u \bigg| \limits^1_0 \bigg]
  3. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:           \displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \frac{e}{3}[ e - e ]
  4. Simplify:                                                                                                         \displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \frac{e}{3}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Book: College Calculus 10e

8 0
3 years ago
If y varies inversely with x and y=2 when x=8 what is K the constant of proportionality
777dan777 [17]
Y=k/x
2=k/8
k=16
the answer is A
7 0
3 years ago
The diameter of the moon is 2,160 miles. A model has a scale of 1 in : 150 mi. What is the diameter of the model?
Charra [1.4K]

Answer:

The diameter of the model is 14.4 inches.

Step-by-step explanation:

The Diameter of the moon = 2,160 miles

The scale on the model represents 1 in = 150 miles

Let the model represents k inches in 2,160 miles.

So, by the Ratio of Proportionality:

\frac{1}{150}   = \frac{k}{2160}

⇒k = \frac{2160}{150} \\\implies k =  14.4

or, k = 14.4 inches

⇒On the scale 2160 miles is represented as 14.4 inches

    Hence the diameter of the model is 14.4 inches.

3 0
3 years ago
1000 students participated in a survey on a university campus about their TV watching habits. All
nasty-shy [4]

Hi, you've asked an unclear question. However, I inferred you may want to know the actual number of students represented by the percentages of 27%, and 61%.

<u>Explanation:</u>

Finding percentage usually involves performing two operations; multiplication and division.

First, all (100%) of respondents said they watched TV at least at some point during the day.

Next, 27% of respondents stated that they only  watched television during prime time hours, in which the actual number of students represented by the percentage is calculated by dividing 27 by 100 and multiplying by 1000 =

\frac{27}{100} * 1000 = 270.

Finally, we are told 61% of respondents stated that they spend prime time  hours in their dorm rooms. The actual number of students represented by the percentage is calculated by dividing 61 by 100 and multiplying by 1000 =

\frac{61}{100} * 1000 = 610

5 0
3 years ago
Other questions:
  • Which of the following shows the factors of 6x^2 - 3x - 18?
    7·1 answer
  • Consider the quadratic equation 2x^2-12x+8=3
    9·1 answer
  • Please hepppp due tomarrow means a lot
    11·1 answer
  • If two successive qrs complexes are 0.8 seconds apart, the heart rate is
    5·1 answer
  • What is the sum of the numbers in the series below? 15 + 11 + 7 + . . . + (–129)
    8·2 answers
  • A line segment has endpoints at (-4,-1) and (2,4). What are the coordinates of the midpoint of this line segment? A. (-1.5,2) B.
    13·2 answers
  • you and a friend of your choice are driving to the island of chincoteague in virginia in two different cars. you are traveling 6
    12·1 answer
  • Is this correct yall ??
    7·1 answer
  • The table below models a exponential function. Find f(8)
    6·1 answer
  • What is the answer to the expression -5x + 1 = 31
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!