-- Find a clean jar that has a tight lid.
-- Take the lid off of the jar.
-- Wave the jar around for a while.
-- Put the lid back on the jar, tightly.
You now have a jar full of air and everything in the air.
You can take it into your laboratory and have your way with it.
Answer:
Force of static friction between the two surfaces
Explanation:
When two surfaces come into contact, they exert a force that resist the sliding of the two surfaces. This force is called static friction.
This force is given by the relation

Where,
μ - coefficient of static friction
η - normal force acting on the body
When a force acts on a body placed on a rough surface, it doesn't do any work if the applied force was less than the force of static friction.
So, in order to move the body, the applied force should be greater than the force of static friction.
Answer:
The direction of these oscillations is the difference between longitudinal or transverse waves. In longitudinal waves, the vibrations are parallel to the direction of wave travel. In transverse waves, the vibrations are at right angles to the direction of wave travel.
Explanation:
Tenemos.
Masa de la mesa = 20kg
Masa encima = 10kg
Masa total = 30kg
Area de cada pata = 20cm² = 20cm² * 1/10000cm² * 1m² =0,002m²
Presió(P)n que se ejerce sobre cada pata.
P =F/A
P = Masa por gravedad/A Masa = 30kg Gravedad =9,8m/s²
P =(30kg * 9,8m/s²)/0,002m²
P = 294kg * m/s²/0,002m² Pero kg *m/s² = Nw
P = 294Nw0,002m²
P = 147000 Nw/m² Pero Nw/m² = pa
p =1,47 * 10⁵ pa
Respuesta.
La presión que se ejerce sobre cada pata es de 1,47 * 10⁵pa
Answer:
7.08 m/s²
Explanation:
Given:
v₀ = 20.0 m/s
v = 105 m/s
t = 12.0 s
Find: a
v = at + v₀
105 m/s = a (12.0 s) + 20.0 m/s
a = 7.08 m/s²