Answer:
See the explanation
Explanation:
In this case, in order to get an <u>elimination reaction</u> we need to have a <u>strong base</u>. In this case, the base is the phenoxide ion produced the phenol (see figure 1).
Due to the resonance, we will have a more stable anion therefore we will have a less strong base because the negative charge is moving around the molecule (see figure 2).
Finally, the phenoxide will attack the <u>primary carbon</u> attached to the Cl. The C-Cl bond would be broken and the C-O would be produced <u>at the same time</u> to get a substitution (see figure 1).
Answer:
Field experiments can often have the potential to give scientists opportunities that are not possible in a lab setting.
Explanation:
Having people "act natural" in a lab setting is impossible to truly achieve, as we all know what happens to our mental state and behavior when we are being actively observed. This is also especially helpful when conducting wildlife research, as there are a myriad of different things influencing animal and plant behavior that would be nigh impossible to recreate perfectly in a controlled lab setting.
Field research can have its disadvantages as well, as it is very hard to only have one thing change (make an independent variable) in a wild environment with ever-changing weather, social effects, etc. Also, you, as the researcher, as causing an impact on the very location that you are observing, which can alter your results in unpredictable ways.
The thing to remember is that each type of study has its advantages and disadvantages; if they didn't, then we'd all do the same type of research! You have to weigh your research options and figure out which one works best for your situation :)
Answer:
False
That is a chemical change
Exothermic processes: Making ice cubes,formation of snow in clouds
Endothermic processe: Melting ice cubes, evaporation of water