<u>Answer:</u>
Things become hot and cold because of the transfer of energy.
<u>Explanation:</u>
The energy possessed by an object or system is called thermal energy and heat is the flow of this energy. While the law of conversation of energy states that energy is not destroyed or created, it just transfers from one object to another.
When a hot object is placed in normal conditions, it transfers heat to the environment until both are at the same temperature and heat transfers from the environment to the cold objects placed in normal conditions.
Answer:
the volume of liquid decreased due to evaporation from the exposed free surface of water so molecules got evaporated .
evaporation occurs at room temperature.
Answer:
<h2>12.5 N</h2>
Explanation:
The force acting on an object given it's mass and acceleration can be found by using the formula
force = mass × acceleration
From the question we have
force = 5 × 2.5
We have the final answer as
<h3>12.5 N</h3>
Hope this helps you
Answer:
The waves will turn slightly to the <em><u>left .</u></em>
Explanation :
The waves will turn slightly to the left, because the left side of each wave front hits the boundary first and slows down, moving more slowly than the right side until the right side of the wave front reaches the boundary. THis causes the wave to veer slightly to the left.
Basically the speed of water depends upon depth of the river or the ocean.
the formula is as follows :
v = √gxd
v = √d (g is the gravitational acceleration)
As the water waves are more at the deeper end then the shallow end, so during its course to the shallower end, they are slightly deviated toward the normal., hence it will move slightly to the left.
Answer:
x(t)=0.337sin((5.929t)
Explanation:
A frictionless spring with a 3-kg mass can be held stretched 1.6 meters beyond its natural length by a force of 90 newtons. If the spring begins at its equilibrium position, but a push gives it an initial velocity of 2 m/sec, find the position of the mass after t seconds.
Solution. Let x(t) denote the position of the mass at time t. Then x satisfies the differential equation
Definition of parameters
m=mass 3kg
k=force constant
e=extension ,m
ω =angular frequency
k=90/1.6=56.25N/m
ω^2=k/m= 56.25/1.6
ω^2=35.15625
ω=5.929
General solution will be
differentiating x(t)
dx(t)=-5.929c1sin(5.929t)+5.929c2cos(5.929t)
when x(0)=0, gives c1=0
dx(t0)=2m/s gives c2=0.337
Therefore, the position of the mass after t seconds is
x(t)=0.337sin((5.929t)