We have that every gas satisfies the fundamental gas equation, PV=nRT where P is the Pressure, V is the volume of the gas, n are the moles of the gas, R is a universal constant and T is the Temperature in Kelvin. We have that PV/T=nR and during our process, the moles of the gas do not change (no argon enters or escapes our sample). See attached.
Answer:
See explanation and image attached for details
Explanation:
The reaction involves the heterolytic fission of the Br-Br bond in the bromine molecule to yield a bromine cation which attacks the but-1-ene to form a cyclic intermediate called the brominium ion. The bromine anion must now attack from the opposite face of the brominium ion due to steric clashes to form a product of a 1,2-dibromoalkane having the anti- stereochemistry.
Answer: a. two substances present; two phases present : Heterogeneous mixture
b. two substances present; one phase present
: Homogeneous mixture
c. one substance present; one phase present
: pure substance.
d. one substance present; two phases present: Heterogeneous mixture
Explanation:
A pure substance is a substance which contains definite composition of only one type of component. Hence, it cannot be separated by physical means.
Mixture is a substance which contains two or more than two types of components and they can be separated by physical means as well.
Homogeneous mixtures: It is a mixture that has uniform composition throughout the solution and the particle size or shapes are not different. There is no physical boundary between the dispersed phase and dispersion medium.
Heterogeneous mixtures: It is a mixture that has non-uniform composition throughout the solution and the particle size or shapes are also different. There is a physical boundary between the dispersed phase and dispersion medium.
The answer to this would be a physical change. Physical changes are changes that affect the form of a chemical substance, but not the chemical composition itself. Hope this helped!
Answer:
A change in form or appearance of matter
Explanation: