Particles in a liquid move freely and liquids have a definite volume and indefinite shape since it occupies the shape of the container in which the liquid is in.
Answer:
Mass of hydrogen gas evolved is 0.0749 grams.
Explanation:
Total pressure of the gases = p = 758 mmHg
Vapor pressure of water = 23.78 mmHg
Pressure of hydrogen gas ,P = p - 23.78 mmHg = 758 mmHg - 23.78 mmHg
P = 734.22 mmHg = 
Temperature of of hydrogen gas ,T= 25°C =298.15 K
Volume of hydrogen gas = V = 0.949 L
Moles of hydrogen gas =n
PV = nRT (Ideal gas equation )

n = 0.03745 mol
Moles of hydrogen gas = 0.03745 mol
Mass of 0.03745 moles of hydrogen gas = 0.03745 mol × 2 g/mol = 0.0749 g
Mass of hydrogen gas evolved is 0.0749 grams.
Mass = 5 g
volume = 20 cm³
density = mass / volume
therefore:
D = m / V
D = 5 / 20
D = 0.25 g/cm³
Temperature, salinity, and density are the group of factors are most important in determining the composition of ocean water.
a.)temperature, salinity, and density
<u>Explanation:</u>
The three fundamental factors that help in determining the composition of ocean water are temperature, salinity, and density. Temperature, saltiness, salinity, and density influence the thickness of seawater.
Enormous water masses of various densities are significant in the layering of the sea water (increasingly thick water sinks). As temperature builds water turns out to be less thick. As saltiness builds water gets denser. The temperature helps in deciding the pace of vanishing of the ocean.
The molarity of a solution is the number of moles of a substance divided by the volume in liters prepared.
, where n is number of moles and V is the volume in liters.
In order to calculate the mass of solute we need to convert the volume and molarity to moles

Now that we have moles we use the relative formula mass of NaCO₃, We have 1 Na atom, 1 C atom and 3 O atoms, thus

