Yes because I went through college and learned this
Answer:
As potassium chloride (KCl) dissolves in water, the ions are hydrated. ... Ion-dipole forces attract the positive (hydrogen) end of the polar water molecules to the negative chloride ions at the surface of the solid, and they attract the negative (oxygen) ends to the positive potassium ions.
<span>3 NO2 + H2O -------->. 2 HNO3. + NO
3(46g)------------------------> 2 ( 63g) HNO3
? kg-------------------------5.89 x10^3kg HNO3
Mass of NO2. = 5.89x10^3 x 138/ 2(63) = 6.45 x10^3 kg</span>
Answer:
According to the proton theory of acids and bases by J. Brønsted and T. Lowry, the acid is<u> proton donor</u>.
Explanation:
According to the Bronsted lowry concept an acid is substance that gives protons or hydrogen ion while,
Base is substance that accept hydrogen ion or proton.
Consider the following example:
NH₃ + HCl → NH₄⁺ + Cl⁻
In this example HCl is Bronsted lowry acid it gives H⁺ while ammonia is Bronsted lowry base because it accept H⁺.
This also gives the concept of conjugate acid and base. In given example Cl⁻ is conjugate base of HCl while NH₄⁺ is conjugate acid of ammonia.
In this reaction 50% of the compound decompose in 10.5 min thus, it is half life of the reaction and denoted by symbol
.
(a) For first order reaction, rate constant and half life time are related to each other as follows:

Thus, rate constant of the reaction is
.
(b) Rate equation for first order reaction is as follows:
![k=\frac{2.303}{t_{1/2}}log\frac{[A_{0}]}{[A_{t}]}](https://tex.z-dn.net/?f=k%3D%5Cfrac%7B2.303%7D%7Bt_%7B1%2F2%7D%7Dlog%5Cfrac%7B%5BA_%7B0%7D%5D%7D%7B%5BA_%7Bt%7D%5D%7D)
now, 75% of the compound is decomposed, if initial concentration
is 100 then concentration at time t
will be 100-75=25.
Putting the values,

On rearranging,

Thus, time required for 75% decomposition is 21 min.