The answer is C,growth spurts,puberty,& sexual maturity
Answer: The correct answer is -297 kJ.
Explanation:
To solve this problem, we want to modify each of the equations given to get the equation at the bottom of the photo. To do this, we realize that we need SO2 on the right side of the equation (as a product). This lets us know that we must reverse the first equation. This gives us:
2SO3 —> O2 + 2SO2 (196 kJ)
Remember that we take the opposite of the enthalpy change (reverse the sign) when we reverse the equation.
Now, both equations have double the coefficients that we would like (for example, there is 2S in the second equation when we need only S). This means we should multiply each equation (and their enthalpy changes) by 1/2. This gives us:
SO3 —>1/2O2 + SO2 (98 kJ)
S + 3/2O2 —> SO3 (-395 kJ)
Now, we add the two equations together. Notice that the SO3 in the reactants in the first equation and the SO3 in the products of the second equation cancel. Also note that O2 is present on both sides of the equation, so we must subtract 3/2 - 1/2, giving us a net 1O2 on the left side of the equation.
S + O2 —> SO2
Now, we must add the enthalpies together to get our final answer.
-395 kJ + 98 kJ = -297 kJ
Hope this helps!
Answer:
False
Explanation:
A liquid has a definite shape and takes on the volume of its container. A gas has both the shape and the volume of its container. The particles in a gas cannot be compressed into a smaller volume. Liquids tend to contract when heated.
Hope this helps
34g C * ( 1 mol / 12.0107 ) * ( 1 mol H2 / 1 mol C ) * ( <span>2.01588 g / 1 mol H2 ) = 5.70657164028741 g H2 = 5.7 g H2
Convert grams of C to moles of C using the given amount of grams and the molar mass ( 12.0107 g/mol ).
Gather the mole ratio from the coefficients in the balanced equation and multiply by the ratio.
Convert moles of H2 to grams of H2 </span> using the given amount of grams and the molar mass ( 2.01588 g/mol )<span>.
Revise your answer to have the correct number of significant figures. </span>
Explanation:
Strength of intermolecular forces depends on the number of carbon atoms present in a compound. More is the number of carbon atoms attached linearly to each other more will be the surface area occupied by it. Hence, more is the strength of the compound.
This means that more is the branching present in a compound or lesser is the number of carbon atoms present in it then less will be the strength of intermolecular forces in the compound.
Thus, we can conclude that given compounds are placed in order of decreasing strength of intermolecular forces as follows.
>
>