Answer:

Explanation:
Hello,
In this case, the described chemical reaction is:

Thus, for the given reacting masses, we must identify the limiting reactant for us to determine the maximum mass of water that could be produced, therefore, we proceed to compute the available moles of ethane:

Next, we compute the moles of ethane consumed by 13.0 grams of oxygen by using the 1:7/2 molar ratio between them:

Thus, we notice there are less available moles of ethane, for that reason, it is the limiting reactant, thereby, the maximum amount of water is computed by considering the 1:3 molar ratio between ethane and water:

Best regards.
Answer:
See explanation
Explanation:
The shorthand nuclear reaction equations have been given; the first particle in the parentheses is a reactant particle while the second particle is a product particle. These can now be rewritten as the longhand equations as follows;
238/92U + 4/2 He -------> 241/94Pu + 1/0 n
238/92U + 4/2 He ------> 241/94Pu + 1/0 n
14/7N + 4/2 He------> 17/8O + 1/1 p
56/26Fe + 2 4/2 He----> 60/29Cu + 4/2 He
Answer:
It effects all of the cellular respiration process
Explanation:
It inhibits the Glycolysis. It replaces the phosphate groups that is needed for making Pyruvate and ATP.
Answer:
Conversion factor;
Molar mass;
Avogadro's constant and molar mass
Explanation:
- Firstly, an intermediate step is to define the conversion factor that will be then used in a conversion technique called dimensional analysis in order to convert from one unit to another. An example of a conversion factor would be, for example, 1 L = 1000 mL, which can be manipulated as a fraction, either
or
; - Secondly, in order to convert mass to moles, we need to know the molar mass of a compound which has a units of g/mol (that is, it shows how many grams we have per 1 mole of substance.
- Thirdly, Avogadro's constant,
tells us that there is
number of molecules or atoms in 1 mole of substance. We need two conversion factors to convert the number of molecules to a mass: firstly, we need to convert the number of molecules into the number of moles using Avogadro's constant and then we need to use the molar mass to convert the moles obtained into mass.