Answer:
A region on top of a mountain is cooler than at the base.
Explanation:
Pressure and temperature have direct relationship with each other. With the decrease in pressure, the temperature decreases and vice versa. When the air rises in the atmosphere, the pressure starts to fall. The low pressure at the peak of the mountains tends to cause the fall in temperature. It is because of this reason that it is cooler at the top of the mountain while the temperature is less cool in the foothills.
Answer:
900 K
Explanation:
Recall the ideal gas law:

Because only pressure and temperature is changing, we can rearrange the equation as follows:

The right-hand side stays constant. Therefore:

The can explodes at a pressure of 90 atm. The current temperature and pressure is 300 K and 30 atm, respectively.
Substitute and solve for <em>T</em>₂:

Hence, the temperature must be reach 900 K.
Manipulation of the independent variable should change the dependent variable, the value of which "depends" on the independent variable's change in value.
The molarity of Barium Hydroxide is 0.289 M.
<u>Explanation:</u>
We have to write the balanced equation as,
Ba(OH)₂ + 2 HNO₃ → Ba(NO₃)₂ + 2 H₂O
We need 2 moles of nitric acid to react with a mole of Barium hydroxide, so we can write the law of volumetric analysis as,
V1M1 = 2 V2M2
Here V1 and M1 are the volume and molarity of nitric acid
V2 and M2 are the volume and molarity of Barium hydroxide.
So the molarity of Ba(OH)₂, can be found as,

= 0.289 M
BaSO4 is the correct formula for barium (ll) sulfate