6.52 × 10⁴ L. (3 sig. fig.)
<h3>Explanation</h3>
Helium is a noble gas. The interaction between two helium molecules is rather weak, which makes the gas rather "ideal."
Consider the ideal gas law:
,
where
is the pressure of the gas,
is the volume of the gas,
is the number of gas particles in the gas,
is the ideal gas constant, and
is the absolute temperature of the gas in degrees Kelvins.
The question is asking for the final volume
of the gas. Rearrange the ideal gas equation for volume:
.
Both the temperature of the gas,
, and the pressure on the gas changed in this process. To find the new volume of the gas, change one variable at a time.
Start with the absolute temperature of the gas:
,
.
The volume of the gas is proportional to its temperature if both
and
stay constant.
won't change unless the balloon leaks, and- consider
to be constant, for calculations that include
.
.
Now, keep the temperature at
and change the pressure on the gas:
,
.
The volume of the gas is proportional to the reciprocal of its absolute temperature
if both
and
stays constant. In other words,
(3 sig. fig. as in the question.).
See if you get the same result if you hold
constant, change
, and then move on to change
.
Answer:
For the first oxide, 1 g gives 0.888 g of copper.
Dividing by 0.888 tells us that 1.126 g gives 1 g of copper so has 0.126 g of oxygen.
For the second oxide, 1 g gives 0.798 g of copper.
Dividing by 0.798 tells us that 1.253 g gives 1 g of copper so has 0.253 g of oxygen.
So 1 g of copper combines with either 0.126 g or 0.253 g of oxygen.
Within the limits of experimental error, 0.253 is twice 0.126, confirming the law of multiple proportion.
Answer:
cis-3-hexene and trans-3-hexene
Explanation:
Hydroboration oxidation is a method of preparation of alcohol from alkene.
Hydroboration follows anti-Markovnikoff rule in which alcohol group attached to less substituted carbon. Stereochemistry of the product is always syn that is H and OH attached to the same side of the double bond.
cis-3-hexene and trans-3-hexene undergoes hydroboration to form 3-hexanol.
Answer:
Explanation:
OK this is simple
i'll try to do the unanswered question
CaCl2
In the table
You look for calcium,Ca you fill 1
THen for Chloride=2
i hope you've understood