Answer:
pH = 11.216.
Explanation:
Hello there!
In this case, according to the ionization of ammonia in aqueous solution:

We can set up its equilibrium expression in terms of x as the reaction extent equal to the concentration of each product at equilibrium:
![Kb=\frac{[NH_4^+][OH^-]}{[NH_3]} \\\\1.80x10^{-5}=\frac{x*x}{0.150-x}](https://tex.z-dn.net/?f=Kb%3D%5Cfrac%7B%5BNH_4%5E%2B%5D%5BOH%5E-%5D%7D%7B%5BNH_3%5D%7D%20%5C%5C%5C%5C1.80x10%5E%7B-5%7D%3D%5Cfrac%7Bx%2Ax%7D%7B0.150-x%7D)
However, since Kb<<<1 we can neglect the x on bottom and easily compute it via:

Which is also:
![[OH^-]=1.643x10^{-3}M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D1.643x10%5E%7B-3%7DM)
Thereafter we can compute the pOH first:

Finally, the pH turns out:

Regards!
hydrogen and carbon, hope that helped
Number 3:
Chlorine, Sodium, Sulfate, Magnesium, and Calcium.
Number 4:
The salt Increases/Decreases the density.
Hope this helps you!
:)
We determine the percent by mass of water in the compound by dividing the mass of water by the total mass. The total mass of Na2SO4.10H2O is equal to 322 g. The mass of water is 180 g.
percent by mass of water = (180 / 322)*(100 %) = 55.9%