(1) The linear acceleration of the yoyo is 3.21 m/s².
(2) The angular acceleration of the yoyo is 80.25 rad/s²
(3) The weight of the yoyo is 1.47 N
(4) The tension in the rope is 1.47 N.
(5) The angular speed of the yoyo is 71.385 rad/s.
<h3> Linear acceleration of the yoyo</h3>
The linear acceleration of the yoyo is calculated by applying the principle of conservation of angular momentum.
∑τ = Iα
rT - Rf = Iα
where;
- I is moment of inertia
- α is angular acceleration
- T is tension in the rope
- r is inner radius
- R is outer radius
- f is frictional force
rT - Rf = Iα ----- (1)
T - f = Ma -------- (2)
a = Rα
where;
- a is the linear acceleration of the yoyo
Torque equation for frictional force;

solve (1) and (2)

since the yoyo is pulled in vertical direction, T = mg 
<h3>Angular acceleration of the yoyo</h3>
α = a/R
α = 3.21/0.04
α = 80.25 rad/s²
<h3>Weight of the yoyo</h3>
W = mg
W = 0.15 x 9.8 = 1.47 N
<h3>Tension in the rope </h3>
T = mg = 1.47 N
<h3>Angular speed of the yoyo </h3>
v² = u² + 2as
v² = 0 + 2(3.21)(1.27)
v² = 8.1534
v = √8.1534
v = 2.855 m/s
ω = v/R
ω = 2.855/0.04
ω = 71.385 rad/s
Learn more about angular speed here: brainly.com/question/6860269
#SPJ1
Answer: Yes Because it matches with the mass and the amount of force Hope this helps :>
Explanation:
The shape is connected in parallel so;
5.1) Ans;

5.2) Ans;

I hope I helped you^_^
Answer:
Explanation:
Yes , their displacement may be equal .
Suppose the displacement is AB where A is starting point and B is end point .
The car is covering the distance AB by going from A to B on straight line . On the other hand plane goes from A to C , then from C to D and then from D to B . In this way plane reaches B from A on a different path which is longer than path of the car . In the second case also displacement of plane is AB . In the second case distance covered is longer but displacement is same that is AB .
Answer:
200 N = 200 Newtons
Explanation:
Just use the formula F = m*a
F = Force in Newtons
m = mass and is 20 kg
a = acceleration and is 10 m/s^2
F = 20 * 10
F = 200 Newtons.