Wave speed = (wavelength) x (frequency)
= (4 m) x (2 /sec)
= 8 m/sec
Answer:
C. both forces have the same magnitude
Explanation:
Here the action force is equal to the reaction force in accordance with the Newton's third law of motion.
Also when we apply the conservation of momentum so that the momentum bullet and the momentum of the gun are equal and according to the second law of motion by Newton, we have force equal to the rate of change in momentum.
We have the equation for momentum as:

Newton's second law is Mathematically given as:

Momentum is constant and the reaction time is equal, so the force exerted will also be equal.
Answer:
are often associated with a galaxy that is colliding with another galaxy.
Explanation:
A starburst galaxy is a galaxy that undergoes very fast formation of stars. The rate at which stars are born is 100 times more than 3 solar masses per year of the Milky Way. The starburst is stage of the formation of a galaxy. After this stage is complete the stars will have used almost all the gas in it. As the star formation rate is very fast the difference between the age of the stars and the galaxy itself is very less. The star formation is triggered by mergers and tidal interactions between gas-rich galaxies.
Using your periodic table if you look at it 3-11 are tansition metals so the horizontal Group Number will help if the group number has to digits just remove the one so if it were to be 13, the valence would be 3, if it were 14 the valence would be ,4 if it were 15, the valence would be 5, if it were 16 the valence would be 6, if it were 17 the valence would be 7 if it were group 18 the valence would be 8 so if anymore help needed to explain hit me up
Answer:
zero
Explanation:
For a solid conducting sphere, charges are present on the surface of the sphere due to a phenomenon known as electrostatic sheilding. This affects the charge present in the body and makes it zero. However, the electrostatic potential appears to be equal to the whole present point that shows on the surface. The surface of a spherical conducting solid sphere is known as an equipotential surface. Thus, the potential difference between the two opposite points on the surface of the sphere will also be zero.