Gas because liquids and solids volumes don't change from switching containers.
Answer:
C = 4,174 10³ V / m^{3/4}
, E = 7.19 10² / ∛x, E = 1.5 10³ N/C
Explanation:
For this exercise we can calculate the value of the constant and the electric field produced,
Let's start by calculating the value of the constant C
V = C
C = V / x^{4/3}
C = 220 / (11 10⁻²)^{4/3}
C = 4,174 10³ V / m^{3/4}
To calculate the electric field we use the expression
V = E dx
E = dx / V
E = ∫ dx / C x^{4/3}
E = 1 / C x^{-1/3} / (- 1/3)
E = 1 / C (-3 / x^{1/3})
We evaluate from the lower limit x = 0 E = E₀ = 0 to the upper limit x = x, E = E
E = 3 / C (0- (-1 / x^{1/3}))
E = 3 / 4,174 10³ (1 / x^{1/3})
E = 7.19 10² / ∛x
for x = 0.110 cm
E = 7.19 10² /∛0.11
E = 1.5 10³ N/C
The gravitional potential energy, relative to the bottom of the giant drop, in joules, is (9800) times (the height of the drop in meters).
That's the PE of the empty car only, not counting any hapless screaming souls who may be trapped in it at that moment.
Answer:
by a rocking chair, a bouncing ball, a vibrating tuning fork, a swing in motion, the Earth in its orbit around the Sun, and a water wave.
Explanation:
Answer:
Time, t = 12 minutes
Explanation:
It is given that,
A cyclist rides 16.0 km east, then 8.0 km west, then 8.0 km east, then 32.0 km west, and finally 11.2 km east. Let west direction is negative and east direction is positive. The displacement of the cyclist is :
d = 4800 m
Let us assumed that the average speed of the cyclist is, v = 24 km/h = 6.66667 m/s
Let t is the time taken by the cyclist to complete the trip. The velocity of an object is given by :
t = 719.99 seconds
t = 720 seconds
or
t = 12 minutes
So, the time taken by the cyclist to complete the trip is 12 minutes. Yes, the time taken by the cyclist to complete the trip is reasonable. Hence, this is the required solution.