C. The number of moles of H in 0.109 mole of N₂H₄ is 0.436 mole
D. The number of moles of H in 34 moles of C₁₀H₂₂ is 748 moles
<h3>C. How to determine the number of mole of H in 0.109 mole of N₂H₄</h3>
1 mole of N₂H₄ contains 4 moles of H
Therefore,
0.109 mole of N₂H₄ will contain = 0.109 × 4 = 0.436 mole of H
<h3>D. How to determine the number of mole of H in 34 mole of C₁₀H₂₂</h3>
1 mole of C₁₀H₂₂ contains 22 moles of H
Therefore,
34 mole of C₁₀H₂₂ will contain = 34 × 22 = 748 mole of H
Learn more about mole:
brainly.com/question/13314627
#SPJ1
Answer:
True
Explanation:
Evaporation is the process by which a substance changes its state from liquid to gas. evaporation occurs at all temperatures but it's rate increases as temperature increases.
Pure water vapour can be produced by evaporation.
As the liquids are removed, the solids present in solution becomes more concentrated.
1 mole C3H8 produces 4 moles H2O. So, first we convert 32 grams of propane to moles and then find moles of H2O. Then convert moles of H2O to grams of H2O
Moles of H2O produced = 32 g C3H8 x 1 mole/44 g x 4 moles H2O/mole C3H8 = 2.909 moles H2O
Grams H2O produced = 2.909 moles H2O x 18 g/mole = 52.36 g = 52 g H2O
The Answer is D. Suspending a heavy weight with a strong chain.
Answer:
Boiling point of the solution is 100.78°C
Explanation:
This is about colligative properties.
First of all, we need to calculate molality from the freezing point depression.
ΔT = Kf . m . i
As the solute is nonelectrolyte, i = 1
0°C - (-2.79°C) = 1.86 °C/m . m . 1
2.79°C / 1.86 m/°C = 1.5 m
Now, we go to the boiling point elevation
ΔT = Kb . m . i
Final T° - 100°C = 0.52 °C/m . 1.5m . 1
Final T° = 0.52 °C/m . 1.5m . 1 + 100°C → 100.78°C