Answer:

Explanation:
We can use the Noyes-Whitney equation to calculate the rate of dissolution.

Data:
D = 1.75 × 10⁻⁷ cm²s⁻¹
A = 2.5 × 10³ cm²
Cₛ = 0.35 mg/mL
C = 2.1 × 10⁻⁴ mg/mL
d = 1.25 µm
Calculations:
Cₛ - C = (0.35 - 2.1 × 10⁻⁴) mg·cm⁻³ = 0.350 mg·cm⁻³
d = 1.25 µm = 1.25 × 10⁻⁶ m = 1.25 × 10⁻⁴ cm

Answer:
11.35 g/cm³
Explanation:
If your rounding then 11.4. hope this helps :)
Answer:
remove product
Explanation:
Removing the product will always shift the equilibrium to the right. This is based on the Le Chatelier's principle which states that "if any of the conditions of a system in equilibrium is changed, the system will adjust itself in order to annul the effect of the change".
- If a system at equilibrium is disturbed, by changing the concentration of one of the substances all the concentrations will change until a new equilibrium point is reached.
- Removing the product will increase the concentration of the species on the left hand side, the equilibrium will shift to the right.
i just cant understand the question
please take a clear pic
Answer:
n = 0.0814 mol
Explanation:
Given mass, m = 35.7g
The molar mass of Tin(IV) bromate, M = 438.33 g/mol
We need to find the number of moles of bromine. We know that,
No. of moles = given mass/molar mass
So,

So, there are 0.0814 moles of bromine in 35.7g of Tin(IV) bromate.