Answer:
1) Ca: [Ar]4s²
2) Pm: [Xe]6s²4f⁵
Explanation:
1) Ca:
Its atomic number is 20. So it has 20 protons and 20 electrons.
Since it is in the row (period) 4 the noble gas before it is Ar, and the electron configuration is that of Argon whose atomic number is 18.
So, you have two more electrons (20 - 18 = 2) to distribute.
Those two electrons go the the orbital 4s.
Finally, the electron configuration is [Ar] 4s².
2) Pm
The atomic number of Pm is 61, so it has 61 protons and 61 electrons.
Pm is in the row (period) 6. So, the noble gas before Pm is Xe.
The atomic number of Xe is 54.
Therefore, you have to distribute 61 - 54 = 7 electrons on the orbitals 6s and 4f.
The resultant distribution for Pm is: [Xe]6s² 4f⁵.
Answer : Methanal also known as Formaldehyde
is a chemical Aldehyde which contain ( -CHO) group.
Explanation :
In organic chemistry, a carbonyl group is a functional group which contain a carbon atom double-bonded to an oxygen atom i.e, ( C=O).
If carbonyl group is present in a compound then it can be a carboxylic (RCOOH), aldehyde (RCHO), ketone (RCOR'), ester ((RCOOR') or amide (RCONR'R") group.
Here are some functional groups naming according to the<em> IUPAC</em> rules and image also attached,
Carboxylic acid → (RCOOH) → ( name end in 'OIC ACID' )
Aldehyde → (RCOH) → ( name end in 'AL' )
Ketone → (RCOR') → ( name end in 'ONE' )
Ester → (RCOOR') → ( name end in 'ATE' )
Amide → (RCONR'R") → ( name end in 'AMIDE' )
In an aldehyde, atleast one hydrogen atom must be attached to the carbonyl carbon. For an aldehyde, remove ( -e) from alkane name and add ( -al) at the end of the compound.
Methanal is the IUPAC name for Formaldehyde.
Answer:
Cp = 0.093 J.g⁻¹.°C⁻¹
Solution:
The equation used for this problem is as follow,
Q = m Cp ΔT ----- (1)
Where;
Q = Heat = 300 J
m = mass = 267 g
Cp = Specific Heat Capacity = ??
ΔT = Change in Temperature = 12 °C
Solving eq. 1 for Cp,
Cp = Q / m ΔT
Putting values,
Cp = 300 J / (267 g × 12 °C)
Cp = 0.093 J.g⁻¹.°C⁻¹
Answer: The range of wavelengths of light that can be used to cause given phenomenon is
.
Explanation:
Given: 222 kJ/mol (1 kJ = 1000 J) = 222000 J
Formula used is as follows.

where,
E = energy
h = Planck's constant = 
c = speed of light = 
Substitute the values into above formula as follows.

Thus, we can conclude that the range of wavelengths of light that can be used to cause given phenomenon is
.
The moles of any substance are equal to the substance's mass divided by its molar mass. Therefore, in order to calculate the moles of copper, you would divide the reacted mass by 63.55