Answer:
(i) Oxidizing Agent: NO2 / Reducing Agent NH3-
(ii) Oxidizing Agent AgNO3 / Reducing Agent Zn
Explanation:
(i) 8NH3( g) + 6NO2( g) => 7N2( g) + 12H2O( l)
In this reaction, both two reactants contain nitrogen with a different oxidation number and produce only one product which contains nitrogen with a unique oxidation state. So, nitrogen is oxidized and reduced in the same reaction.
Nitrogen Undergoes a change in oxidation state from 4+ in NO2 to 0 in N2. It is reduced because it gains electrons (decrease its oxidation state). NO2 is the oxidizing agent (electron acceptor).
Nitrogen Changes from an oxidation state of 3- in NH3 to 0 in N2. It is oxidized because it loses electrons (increase its oxidation state). NH3 is the reducing agent (electron donor)
(ii) Zn(s) +AgNO3(aq) => Zn(NO3)2(aq) + Ag(s)
Ag changes oxidation state from 1+ to 0 in Ag(s).
Ag is reduced because it gains electrons and for this reason and AgNO3 is the oxidizing agent (electron acceptor)
Zn Changes from an oxidation state of 0 in Zn(s) to 2+ in Zn(NO3)2. It is oxidized and for this reason Zn is the reducing agent (electron donor).
Balanced equation:
Zn(s) +2AgNO3(aq) => Zn(NO3)2(aq) + 2Ag(s)
PH = -log[H+]
That is, pH is the negative logarithm of the hydrogen ion concentration.
pOH = -log[OH-]
pOH is the negative logarithm of the hydroxide ion concentration.
The correct answer to your question is a. The negative logarithm of the hydrogen ion concentration.
The writers of the Articles of Confederation wanted to preserve the states' sovereignty.
Answer:
partial pressure of gas D Pd = 15.5 kPa
Explanation:
As per the Dalton's law of partial pressure, in a mixture, pressure exerted by each gas when summed gives the total partial pressure exerted by mixture.
P(Total) = P1+P2+P3.....
Given P(Total) = 35.7 kPa
Partial pressure of gas A Pa = 7.8 kPa
Partial pressure of gas B Pb = 3.7 kPa
Partial pressure of gas C Pc = 8.7 kPa
There, Partial pressure of gas D Pd = P(Total) -(Pa+Pb+Pc)
Pd = 35.7-(7.8+3.7+8.7) = 35.7-20.2 kPa = 15.5 kPa
Therefore, partial pressure of gas D Pd = 15.5 kPa
Answer:
28.20 mL of the stock solution.
Explanation:
Data obtained from the question include the following:
Molarity of stock solution (M1) = 12.1 M
Volume of diluted solution (V2) = 350.0 mL
Molarity of diluted solution (M2) = 0.975 M
Volume of stock solution needed (V1) =..?
The volume of stock solution needed can be obtained by using the dilution formula as shown below:
M1V1 = M2V2
12.1 x V1 = 0.975 x 350
Divide both side by 12.1
V1 = (0.975 x 350)/12.1
V1 = 28.20 mL.
Therefore, 28.20 mL of the stock solution will be needed to prepare 350.0 mL of 0.975 M HCl solution.